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Overview 1

Overview

This document (available as uVLBI Memo #25 from Haystack) attempts to collect the
various considerations leading to an implementation of a burst mode recorder (BMR) system
for use with existing VLBI systems. Such systems are evolving to deliver ever increasing
sustained data recording rates (4 Gbps and greater) in a variety of data formats (Mark 5B,
Mark 5C, VDIF, ...). However, there are many reasons to want a system that can capture
data at still higher rates for brief periods separated by non-capture intervals for an agregate
rate comparable to what can be achieved with a sustained recording system. Indeed, while
the VLBI technique requires carefully-timed recordings at remote stations, it generally does
not require continuous recording for scans of long duration—atmospheric turbulence usually
limits coherence to at most a few minutes.

This document is aimed towards pinning down some of the various options in order to
produce a workable system in the near-term that can be extensible to most foreseen future
needs. It then describes an initial implementation (designed for testing the capabilities of
the hardware) that could also be used for field observations. Some basic tests with this
system were performed in the lab and are described here.

For the purposes of this discussion, we can summarize the basic goal as the ability to
capture data from some number (D) of digital data sources (DDSs) generating data at a
continuous rate of 4 Gbps in the form of UDP packets delivered on a 10 Gbps ethernet link.
Thus we are talking about a per-station recording rate of 4D Gbps. For example, the iBob
DBE deployed at a number of sites supports two 512 MHz IFs, which, with 2bit sampling
at the Nyquist rate would be one such DDS if it provided data via the 10 Gbps ethernet
interface.

Within an order of magnitude, we want a capture session lasting about a minute. Ignor-
ing manufacturing hype, current sustained disk storage rates are on the order of 125 MBps
to a single disk. The captured data needs to be deliverable to some correlator system in a
convenient fashion (disks, disk files, network sockets, ...).

For reference, these numbers (crudely) imply:

4 Gbps = 1.8 TBph = 11 TB / 6h night
1 m at 4 Gbps = 30 GB
30 GB / 125 MBps = 4 m

for 4 Gbps systems, and

8 Gbps = 3.7 TBph = 22 TB / 6h night
1 m at 8 Gbps = 60 GB
60 GB / 125 MBps = 8 m

for 8 Gbps systems. (Here we use s, m, h for seconds, minutes, hours; b, B for bits and
bytes, and M, G, T are the usual mega, giga, tera metric prefixes, but with approximate
usage: in VLBI parlance, 1 Gbps usually means 1024000000 bits per second which is neither
fish nor fowl in the usual (SI units or computer) usage.)

Thus a 1:1 duty cycle (i.e. one minute of capture only followed by one minute of recording
only) requires 4 disks, each with a 2.7 TB capacity at 4 Gbps. For 8 Gbps, we’d need 8 3
TB disks. Obviously, various bits of cleverness (or lack of it) as well as variations to the
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Overview 2

observing program will improve or degrade these basic numbers. These numbers should
then be multiplied by (D S) for an S-station network.

An additional point to make is that, while targetted towards the burst application,
the implementation should not preclude an evolution to a(n eventual) sustained recording
system.

With these basic numbers in mind, the next sections cover the existing hardware and
some future options, then some current benchmark numbers, sections on the software design,
and finally some results from testing an initial implementation using a modified Roach DBE
(RDBE-S).

burst-hard.texi 25 April 2011



Chapter 1: Burst Mode Hardware 3

1 Burst Mode Hardware

Before moving on to the software considerations, we briefly document the initial testbed
hardware and the second generation burst-mode hardware.

1.1 Testbed System Components

A prototype test-bed system (Maxwell) was purchased and assembled from components then
available (ca. 2009) to provide the baseline test numbers mentioned in the next section of
this document. It consists of a Debian ("Lenny") Linux system with:

• SuperMicro Computer (SC745TQ-R800B) Chassis

• SuperMicro serverboard (X7DWN+: UIO, 1600FSB dual Quad-Core Xeon [Seaburg],
Intel 4500 chipset)

• Quad-Core Intel Xeon CPU E5462 @ 2.80GHz

• 8+16 GB DDR2 800 SDRAM Fully Buffered DIMM (FB-DIMM; Kingston ValueRam
KVR800D2D4F5/2G modules in 4 slots, Kingston ValueRam KVR800D2D4F5/4G
modules in 4 slots, w/8 empty slots)

• SuperMicro 10 Gb Ethernet Card (AOC-STG-i2) with a dual port Intel 82598EB con-
troller and two CX4 connectors, in a PCI-E x8 slot

• SuperMicro 8-port SATA Card (AOC-SAT2-MV8) via PCI-X bus

• (one) Barracuda 7200.11 SATA 3Gb/s 640-GB

• (eight) Hitachi HDT721032SLA360 320 GB disks

• (one) INTEL SSDSA2MH16 solid state disk

• et cetera.

The E5462 is of the "Harpertown" series of the Xeon processor family. This CPU and its
peripherals are connected via the bus architecture similar to that shown in Figure 1.1.

The front side bus (FSB) is 1600 MHz in our system, and is the likely bottleneck for
our burst mode recording needs. That is, the data flow from the network interface to RAM
memory is via the CPU but it must travel through the memory controller at least twice.
(I.e. from a PCI Express [PCIe] card to the CPU and thence to system memory.) While
there is a motherboard socket for an additional CPU and a second ethernet card, it’s not
at all clear that the performance would double—rather the load on the memory controller
hub is merely doubled.

For testing, a slower companion machine (mjg-pc) was used. Its components were not
selected for this program, except for the same 10 Gb Ethernet Card. Its performance was
considerably worse.
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Figure 1.1: Bus Architecture for Initial Test-bed System (Maxwell).

1.2 Next Generation Testbed System

Intel has (of course) been aware of the system i/o bottleneck for some time—the more recent
"Nehalem" architecture rearranges the controllers as shown in Figure 1.2 so that there is
a faster path between the PCI Express bus and the core processors and also a faster path
between the processor cores and memory.

Figure 1.2: Nehalem Bus Architecture in Next Generation System (Monarth).

burst-hard.texi 25 April 2011



Chapter 1: Burst Mode Hardware 5

In this architecture the (DDR3) memory installed is directly accessible directly to the CPU
cores. Now, during the capture process the data need only make one trip through the I/O
handler (X58 in the Figure 1.2. It is thus likely to be much more efficient. The Quick Path
Interconnect (QPI) architecture is rated for 25.6 GB/s (bi-directional) so the hardware
speed limit in this architecture is likely to be the number of 10 Gb ethernet devices that
can be usefully connected. We assembled a system (Monarth) using this architecture, with:.
• SuperMicro Computer (745TQ-R1200B) Chassis
• SuperMicro motherboard (X8DAH+) which supports up to 192GB RAM (18 slots), 2

(x16) PCI-E 2.0, 4 (x8) PCI-E 2.0 (1 in x 16 slot), 1(x4) PCI-E (in x8 slot)
• Quad-Core Intel Xeon E5630 CPU @ 2.54GHz (12M cache, 5.86 GT/s QPI)
• 24 GB DDR3 1066MHz Ram
• SuperMicro 10 Gb Ethernet Card (AOC-STG-i2) with a dual port Intel 82598EB con-

troller and two CX4 connectors, in a PCI-E x8 slot
• SuperMicro 8-port SATA Card (AOC-SASLP-MV8) via PCI-E bus
• (eight) Western Digital WE20EARS 2 TB (Caviar Green) disks
• et cetera.

In particular, we were able to find a motherboard (X8DAH+) that supports two processors
and uses two of the X58 chipsets. With one CPU and one ethernet card it should do no
worse than Maxwell which appears capable of 8 Gbps in burst mode. Assuming the two
"sides" (i.e. one CPU + X58) do not interfere, a 16 Gbps capability should thus obtain with
the new machine.

1.3 Additional Hardware Options

Additional ethernet cards could be added to the PCI-Express bus in the Nehalem-based
testbed. While the QPI network should not be a bottleneck, it is possible the shared cache
of the CPU cores, or the memory access might become the new bottleneck. This is still to
be investigated.

Moving beyond data capture, if the data is to be stored within this system there is the
basic choice of whether it is to be stored on internal disks, or else onto external disks. Either
way, there is the additional question of whether a hardware RAID controller should be part
of the mix, or whether the disks are RAIDed together in software, or else are accessed
individually.

Some of the potential sites are at high altitude where disk performance becomes an issue
(e.g. Mauna Kea in Hawaii). Potentially, disks can be found which will still work (as has
been done in the past). Otherwise, some means of pressurizing (and controlling heat) either
the entire system or merely the (external) disk pack would need to be found.

In any case, the SATA card (AOC-SASLP-MV8) can connect 8 disks to the system via a
pair of SAS connectors that subdivide into 4 separate connectors for the disks. Thus it
should be straightforward to connect up external disks (suitably) packaged in multiples of
4.

We will leave hardware for now and move on to software. (Obviously with a candidate
software system it will be necessary to revisit the hardware choices for deployment in the
field, but that’s a topic for later.)

burst-bench.texi 25 April 2011
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2 Initial Benchmarks on Maxwell

With the initial testbed system (Maxwell), we established that UDP packets of the type ex-
pected by the Mark5C (5008B / packet) can be captured to RAM reliably at 4 Gbps and that
8 Gbps (so packetized) initially did not appear to be possible. A simulator (Mark5CPacEmu)
running on a slower machine (Mjg-pc) was used, so the numbers in the next two sections
largely reflect the limitations of that system.

The initial testbed system appears to be able to manage a sustained data write just
short of 4 Gbps across a RAID0 built with 8 disks.

2.1 Status on June 25, 2010

Some initial numbers using simple programs push_test, grab_test and m5L2:

Test Name MarkPac5CEmu@5.5Gbps push test@10.0Gbps
(50 GB buffer) (50 GB buffer)

maxwell: recv only 5.7 top, 5.5 avg 5.2 top, 4.6 avg
maxwell: recv to RAM 5.7 4.6

maxwell: SSD 0.6 0.6
maxwell: primary HD 0.7 0.7
maxwell: RAID0 4.3 top, 3.4 avg 3.7 top, 3.4 avg
maxwell: RAID5 2.1 2.1
A couple of things worth mentioning:
• Tests near the top of the range tended to be erratic, varying by up to 1 Gbps.
• The CPU% for the grab process never exceeded ~60-70%.
• For the RAID0 tests, there were a few other processes taking up to 7% CPU each:

pdflush, kswapd0, xfsdatad, kjournald. These are related to page swapping and disk
management. (Does it make sense that we should be paging out a lot?)

• push_test seems to yield lower rates than m5L2, but delivers increasing returns as you
bump up the rate–is that due to the timing issues? I tried to take it over 10.0, but it
wouldn’t run (I’m guessing maybe it’s running into a data type problem, but I haven’t
checked yet.)

Bottom line, I’m still kind of unhappy with the inconsistency of the results. These
numbers are averages of several ~15-minute tests though, so they should be okay in that
respect.

2.2 Status on July 21, 2010

A working GRAB plus PUSH process (bmr_buffer, see Section 5.2 [bmr buffer], page 21)
has been implemented and appears to work on Maxwell using packet source and sinks on
Mjg-pc. Commands such as the following:

# these commands:

mjg-pc$ grab_test -v -H 192.168.1.9:2652 -n 10000000 grab

maxwell$ while true ; do sleep 1 ; echo counters ; done |\
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bmr_buffer -v \

-c grab:addr=192.168.1.10 -c push:addr=192.168.1.9 \

-c grab:gbps=5.0 -c push:gbps=2.5

mjg-pc$ Mark5CPacEmu/server/m5L2 -u 192.168.1.10 \

-l 5008 -fb -t 10000 -r 5000

# produces:

1279737169.369644768 GrabRT: 5.00913 Gbps (19.999950969 s)

1279737169.369645608 SendRT: 2.50456 Gbps (39.999976627 s)

1279737169.369644768 Active: 12522794464B 2500558P 0z 0e 0c

1279737169.369644768 Passive: 1991716656B 397707P 0z 0e 0c

1279737169.369645608 Sending: 12522794464B 2500558P 0z 0e 4022770c

1279737169.369645608 Idling: 0B 0P 0z 0e 35989826c

1279737169.369645608 TooSoon: 0rw 1522212inv 0rl 2423916slp

suggest that bmr_buffer could receive at 5 Gbps and dump to a Mark5C at 2.5 Gbps. The
Active and Sending refer to bytes and packets in the the capture and delivery parts of the
cycle—the other counters refer to various other debugging diagnostics.

# these commands:

mjg-pc$ grab_test -v -H 192.168.1.9:2652 -n 10000000 grab

maxwell$ while true ; do sleep 1 ; echo counters ; done |\

bmr_buffer -v \

-c grab:addr=192.168.1.10 -c push:addr=192.168.1.9 \

-c grab:gbps=5.0 -c push:gbps=2.5

mjg-pc$ push%test -v -H 192.168.1.10:2650 \

-n 100000000 -z 5008 -r 0.0 send

# produces:

1279740211.884492708 GrabRT: 4.5677 Gbps (20.000076978 s)

1279740211.884493441 SendRT: 2.28386 Gbps (39.999905258 s)

1279740211.884492708 Active: 11419296688B 2280211P 0z 0e 0c

1279740211.884492708 Passive: 2188440912B 436989P 0z 0e 0c

1279740211.884493441 Sending: 11419276656B 2280207P 4z 4e 7778607c

1279740211.884493441 Idling: 0B 0P 0z 0e 29763220c

1279740211.884493441 TooSoon: 0rw 5498396inv 0rl 2213853slp

The Mark5CPacEmu does a more careful rate emulation; push_test has a lower maximum
rate, but is still able to deliver 4.5 Gbps to bmr_buffer. In this case, there were errors
sending (only) 4 of the (2+ million) captured packets.

2.3 Status on Sept 16, 2010

It was subsequently determined that the network card was not plugged into an x8 PCI-
Express slot (rather, an x4 slot). That was one limitation. Further, the linux kernel
normally expects to swap pages of memory out to disk well before memory is fully in use.
There are ways to disable this (in software); however it is rather straightforward to find
"safe" operating conditions (i.e. shorter grab periods) where the kernel is willing to leave
the pages being used for capture in memory.

A further consideration is that the CPU cores are able to operate with some parallelism,
despite the apparent bottleneck in transferring packets from the NIC card to the CPU
cache. Thus, operating with 2 receiving processes results in a significant improvement in
capture capability.

Thus two CX4 cables given separate ethernet addresses can be carrying packets addressed
for capture by 2 separate cores. Finally, the maximum ethernet packet size is 9000B. Using
a larger VDIF packet (8KB) rather than 2 smaller Mark5B packets results in less work-per-
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packet for the CPUs. This last step of testing was only possible when the initial version
of the Astro8Gbps personality for the RDBE (see Chapter 6 [rdbeusage], page 29) became
available.

Testing with bmr_record (see Section 5.3 [bmr record], page 22):
# grab:secs=4 grab:flush=1 grab:period=10

A-9: 1284668054.968918370 GrabRT: 4.10459 Gbps (57.395267084 s)

A-9: 1284668054.968918915 WriteRT: 1.92739 Gbps (122.348702018 s)

A-9: 1284668054.968918370 Active: 29448037248B 3577264P 0z 0e 0c

A-9: 1284668054.968918370 Passive: 326898454B 39515P 6z 0e 0c

A-9: 1284668054.968918915 Saving: 29476655360B 3577264P 0z 0e 3577415c

A-9: 1284668054.968918915 Idling: 0B 0P 0z 0e 0c

A-9: 1284668054.968918915 NoWrite: 151rw 0inv 0rl 3577264ok

B-9: 1284668054.968656534 GrabRT: 4.09523 Gbps (57.532007885 s)

B-9: 1284668054.968657204 WriteRT: 1.92949 Gbps (122.226842610 s)

B-9: 1284668054.968656534 Active: 29450844360B 3577605P 0z 0e 0c

B-9: 1284668054.968656534 Passive: 331473378B 40065P 3z 0e 0c

B-9: 1284668054.968657204 Saving: 29479465200B 3577605P 0z 0e 3577754c

B-9: 1284668054.968657204 Idling: 0B 0P 0z 0e 0c

B-9: 1284668054.968657204 NoWrite: 149rw 0inv 0rl 3577605ok

In the output above, GrabRT refers to the packet capture rate, WriteRT refers to the packet
write rate, and the other fields provide diagnostics on the numbers of bytes (B) or packets
(P) seen in the various modes (described in the next section).

Thus with this final improvement, 8 Gbps burst mode recording is possible. The write-
to-disk was not pushed above an agregate 3.8 Gbps for this example.
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3 Software Tasks

For design purposes, it is convient to decompose the work of the burst mode system into
three essential performance-critical tasks

• the task ("GRAB") of capturing the data

• the task ("SAVE") of storing the data

• the task ("DUMP") of delivering the data

for which we need to be careful to achieve optimal behavior. These form the basis of the
architectural discussion that follows (see Chapter 4 [architecture], page 13). There certainly
are a variety of lesser tasks (commanding, reporting, monitoring, disk characterization, data
checking &c).

3.1 GRAB Task

The flow of data in the GRAB task is shown in Figure 3.1.

Figure 3.1: The data in the GRAB task originates in the DDS and is captured to RAM.

Here some (VLBI) digital data source (DDS) generates ethernet or UDP packets which are
picked up by the 10 Gb ethernet card (ETHC) and transferred by the CPU to RAM. In
general, the same BMR might have multiple (E) ethernet cards and multiple processing
cores (P). Assuming there are independent data pathways, the better performance should
follow from assigning each ethernet card to its own processing core.

It is not clear that we need to consider data sources other than UDP. (The Mark5C is
prepared to accept VLBI data directly encapsulated in the Layer 2 MAC packets.) The
UDP packet size is limited to be less than 9000 by the ethernet layer. In the Mark5B
emulation mode, the VLBI data payload is 10000 B, so this is divided into two ~5000 B
packets linked by a serial number and only one of the packets has the timing information.
If VDIF is used, then the packet size can be somewhat more arbitrary in size.

The most optimal choice for the GRAB process is to capture everything that meets
trivial filter critera (e.g. the packet is intended for "me", or the size is "right").

3.2 SAVE Task

Once the data is captured in RAM, the BMR system should transfer it to more permanent
media as show in Figure 3.2
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Figure 3.2: Data saved in RAM (by the GRAB process) flows through the CPU on its
way to permanent storage in disk filesystems. The disks might be internal or external.

Here we are assuming either internal (iDisks) or external (eDisks) managed by some disk
controller (DC). As indicated in the overview, current disks cannot write data at sufficient
sustained rates for our needs. So the DC is either some explicit management of the writes
across several disks, or else a software or hardware RAID controller.

The advantage to an explicit scheme is that one has complete knowledge of the disk
contents. The disadvantage is that there is more code to write and test. (It is probably less
efficient than a hardware RAID controller as well.)

Conversely, the hardware RAID controller may offer the best performance for redundant
storage (e.g. RAID 5).

From the software perspective, there is no real distinction between internal and external
disks. However, some mechanism for tracking what data is on what disks is desirable in
any case.

An efficient (real-time) filesystem is desirable. (One could attempt raw data access
to the disks devices, but that is probably not advisable.) There is also a trade-off to be
made on speed of disk writes at the expense of a greater bookkeepping burden and a more
complicated playback mechanism.

3.3 DUMP Tasks

Finally, the saved data will at some point need to be used somehow. The two obvious choices
are either a Mark 5C (M5C) unit (possibly more than one) or else some other consumer,
e.g. direct replay into a software correlator system. This is shown in Figure 3.3.

Figure 3.3: The data that was stored on disks will eventually need to pass to some
"consumer", (e.g. a software correlator), or to some other (more robust) recorder (e.g. a
Mark5C).

If the data is on external disks, then those disks can be directly transferred to the consumer
(e.g. to a software correlator as disk mounts); however, unless the data was written in some
expected format, some translation of the data may be needed.
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If the data is on internal disks, then the burst mode recorder must be prepared to generate
data packets (e.g. UDP) or else a higher level TCP socket connection to the consumer. The
easiest data product to emit is the same set of UDP packets that it received—since this
stream was presumably recordable by an M5C, it could be delivered to an M5C without a
minimum of effort.

These three tasks could be operated exclusively—i.e. only one task active at a time. If
performance permits the GRAB and SAVE tasks to operate in parallel, the duration of the
record-only part of the duty cycle could be shortened. That is not really a goal in this work.

The "DUMP" task can be partitioned into two performance critical portions; call them
LOAD and PUSH. The former (LOAD) reads the data back off the disks from their saved
format and places it in RAM (see Figure 3.4).

Figure 3.4: Data that was temporarily stored on disks is reloaded into RAM.
The latter (PUSH) takes data in RAM and re-packetizes it and delivers it out the ethernet
interface at some measured rate (see Figure 3.5).

Figure 3.5: Data resident in RAM is, in this example, PUSHed out to a Mark5C.
This activity comes in two flavors: one for pushing the packets out as received (e.g. suitable
for storage in a Mark5C), and another for delivering data via (TCP) socket for use in a
software correlator.

In summary, one can thus view the data as flowing through through the system in all
phases as shown in the following diagram (see Figure 3.6). The various task pieces can be
assembled to form several, separate processes to carry out complete, high-level activities.
For completeness, a variant of LOAD that merely simulates data (FAKE) is also shown.
Such a task is useful in testing.

Figure 3.6: Complete flow of data through the burst mode system.
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3.4 Those Other Tasks

The lesser tasks must necessarily operate in parallel, however, they should not be computa-
tionally intensive. Likewise, the operating sytem task load should be adjusted so that it is
not capable of (independently) launching significant processor activity that might interfere
with the GRAB task.

Some interface to these processes is needed. The Mark5C drs application uses a com-
mand set (VSI-S) that has been used throughout the Mark5 series of recorders–it is pre-
sumed the users would appreciate a similar command set. However, the "burst" mode of
operation is not directly supported in that command set (except via explicit scheduling of
the recording scans). We will find it useful to develop the capability first (with the essential
commands) and adapt it to the specific needs of VSI-S, later. (I.e. the existing VSI-S com-
mand set can simply be augmented by a small number of additional commands to support
burst mode recording.)

From the VSI-S command set, we will likely want to support these:

Command Meaning
error? Get error number/message (query only)
status? Get system status (query only)
record Turn recording on|off; assign scan label
dir info? Get directory information (query only)
disk size? Get disk sizes (query only)
rtime? Get remaining record time on current disk set (query only)
and possibly the following:

Command Meaning
DTS id? Get system information (query only)
OS rev? Get details of operating system (query only)
protect Set/remove erase protection for active module
data check? Check data starting at position of start-scan pointer (query only)
scan check? Check data between start-scan and stop-scan pointers (query only)
scan set Set start-scan and stop-scan pointers
disk model? Get disk model numbers (query only)
disk serial? Get disk serial numbers (query only)
get stats? Get disk-performance statistics (query only)
start stats Start gathering disk-performance statistics.
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4 Architecture

Building on the preceding discussion we now fill in some details. We will omit some "nice
to have" features at this time and focus on the essential requirements. For the present
discussion, we’ll even omit some implementation details.

4.1 GRAB Task Requirements

The grab task obviously needs to know the where (udp_addr and udp_port) to claim the
UDP packets. The various VLBI specifications suggest that it can insist on a fixed size
of packet (udp_size) for any recording session and that they be arriving at no more than
some fixed rate (e.g. udp_rate), the rate in packets per second, which can be computed
directly from the nominal bit rate). This size and rate could be fixed from the first packets
received, but it would be better to specify this by command.

The GRAB task will be most efficient if it can be agnostic about the packet contents.
However the RAM usage and packet order are possibly of interest to the eventual SAVE
and DUMP tasks, so a simple (64-bit) serial number suffices to track packets. This can be
either external to the packets, or possibly inserted into packets as they arrive. Eight bytes
are certainly more than adequate for this. The GRAB task can then increment this number
(next_seqn) after each packet and would alternate serial number and packet contents for
a total of mem_chunk bytes written to RAM per packet.

The GRAB task needs to know where to put the data in RAM (mem_*). If there are
multiple CPUs sharing RAM, the allocation of RAM buffers will need to be coordinated
(trivially with malloc, most likely). Several pointers and sizes (mem_*) would be needed to
manage this. Ideally the buffer size should be chosen (reduced) to hold an integral number
of packets:

mem_chunk = udp_size + sizeof(int64_t)
mem_size = grab_secs * udp_rate * mem_chunk

where grab_secs is the duration of the packet capture phase. In practice, adding a few
extra seconds to the buffer size prevents it from wrapping during a single acquisition cycle.

The GRAB task also needs to know when to start, how long to ignore packets (after
the capture phase), and how many times to repeat the cycle before stopping. (We assume
here that the DDS is continuously emitting packets. Obviously the logic can be made more
complex through commanding of the DDS to turn packets on/off.) We can use parameters
such as grab_start, grab_stop, and grab_period to make this unambigous across all
the BMRs involved in the observation. We assume the start time is guaranteed to be
correct through a system clock synchronized via NTP. Additional parameters, grab_idle
and grab_cycles are trivially computed:

grab_idle = grab_period - grab_secs
grab_cycles = floor((0.5 + grab_stop - grab_start) / grab_period)

(where 1/2 second of rounding forces the expected number of cycles in most cases). Equiva-
lently, grab_cycles or grab_idle could be given, with grab_stop and grab_period as the
computed quantities. Once programmed, a decrementing cycle count and working UNIX
time variables can be set to switch between the capture and idle modes.

burst-arch.texi 25 April 2011



Chapter 4: Architecture 14

Thus a structure which includes the following suffices to give the GRAB task its marching
orders:

typedef struct grab_state {
char udp_addr[128]; /* binding address of UDP */
int udp_port; /* the Mark5C uses 2650 */
int udp_size; /* must be less than 9000 */
long udp_rate; /* in packets per second */

int64_t next_seqn; /* a sequence counter */
void *mem_start; /* start of a buffer */
ssize_t mem_size; /* of some size */
void *mem_write; /* place for next packet */
int mem_chunk; /* bytes written per packet */

time_t grab_start; /* UNIX time to start */
time_t grab_stop; /* UNIX time to stop */
int grab_secs; /* grabbing duration */
int grab_idle; /* secs between grabs */
int grab_period; /* grab_secs+grab_idle */
int grab_cycles; /* how many rep times */

/* additional working state variables */
} GrabState;

Presumably some socket could be listening for the "stop" command to abort the GRAB task
in the middle of things. Likewise (assuming the other parameters were specified somehow)
a version of the "start" command could support the "start now" capability (i.e. the VSI-S
"record=on" command).

Note that there may be insufficient RAM memory to accomplish the commanded task.
In that case, it should either be objecting strenously or else be accomodating. (One could
argue for different policy choices here—the initial implementation should strive to cope, I
think.)

The serial number could be seeded (e.g. using the high bits) with station/band infor-
mation so that all packets captured within the experiment are unique. (Exactly how many
bits are available here depends on the total number of bits/packet, channels/station and
number of stations.)

Additional meta-data might arrive in real time (e.g. PPS events). If these are not
provided to the same UDP target then there is no (great) need for the GRAB task to
capture these, rather some other task can be delegated to handle this. If such meta-data
arrives via the same UDP target, then the GRAB task needs to know how to distinguish
these packets (and what to do with them). This could be handled by a flag bit in the
sequence number.

The RAM memory buffer could be either a circular buffer or a pair of ping-pong buffers.
The former requires more address arithmetic during the capture cycle (a test for wrap
after each increment), but transitions nicely into continuous operation and uses half as
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much memory. If we transition to continuous operation, the latter will require an artificial
division into recording sessions (for ping or pong). Unless there is a reason to do otherwise,
we’ll begin with a circular buffer implementation. Note that the GRAB task need not
trouble itself to maintain a mem_read pointer—it can/should assume that the SAVE task
is watching the mem_write pointer and coping as needed.

The GRAB process could insert fill packets if packets are found not to be arriving at
the specified rate. (And then, only if needed by the "consumer".) Alternatively, this
functionality can be passed along to either the SAVE or DUMP tasks, so (in the interest of
reducing the load the the GRAB task) we shall assume one of them handles it.

4.2 SAVE Task Requirements

The SAVE task needs to be aware of what the GRAB task is doing so that (as a minimum)
it can save data up to the current write point. (The sequence number can play a role here.)

The SAVE task needs to know whether it should be quiescent during the active capture
phase of a recording session or not. (A simple binary yes/no overlap policy is adequate.)
There may be reasons (e.g. efficiency) to write the packets to disk in groups (pgroup).

The SAVE task will have some initialization work to do—this is mostly identifying what
disks are available, how much space is on them, and how the packet data is to be written.
The XFS filesystem has support for real-time applications—we need to investigate whether
that helps us here or not.

The SAVE task should probably be annotating some sort of master observational/data
log information for the disk set in use. (Does the Mark5 series do this?) Potentially most
of this information could be present in this file. This information would be collected to
facilitate the eventual replay of the data.

GrabState grab_copy; /* a copy of grab task information */
typedef struct save_state {

/* coordination */
int overlap; /* permission to run simultaneously */
int ppgroup; /* number of packets per group-write */
/* disk information */
int save_type; /* RAID or multiple files */
long max_cycles; /* maximum cyles per file group */
char *scan_label; /* a label for the saved files */
int save_size; /* bytes written per packet */
int num_files; /* number of files/disks to use */
char *path[BMR_MAX_FILES];
/* logging information, &c */

} SaveState;

Presumably a recording session (i.e. grab_cycles bursts of recording or equivalently from
"start" to "stop") will be saved as some number of files on disks, labelled by some scan
name. If a RAID system is being used, then the obvious choices are either ONE file or
grab_cycles files.
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If a RAID system is not being used, then the SAVE task will presumably have one file
per disk open at a time and farming the packets out among the (JBOD) disks in order to
maximize throughput. With R disks, this is then either R files or R * grab_cycles files.

The simplest farming scheme is some function of the packet sequence number modulo
R. However if select is being used, some egalitarian choice among "writable" (selected)
files could be made—i.e. disks get used as they become available. This places a burden on
the playback, of course. One may worry about disk failures. If they are likely, R should be
prime (or some quasi randomization of the writes should be implemented).

It may be desirable in any case to limit the size of files written (in case of disk corruption);
a simple way to do this would be to put at most max_cycles per file (or JBOD collection
of files): every max_cycles of recording, the files would be closed, the file name index
incremented, and the new files opened.

Note that from the perspective of the SAVE task, there is no real difference between
having only one disk to farm with and a RAID.

If the data is to be DUMPed from the burst mode system via its own software, then it
is free to use whatever disk format is convenient. (I.e. as long as it can locate and produce
the data as needed, there is no fixed requirement for exactly how the data is written to disk
and efficiency of write is probably the prime consideration.)

On the other hand, it may be able to edit the data prior to the disk write (so that what is
on disk is written once, and thereafter only consulted read-only). Either approach involves
the same software, discussed below (see Section 4.3 [filereq], page 16).

The GRAB and SAVE tasks have real-time schedules to meet that could be met within
one process which selects across multiple file descriptors: the DDS socket, one or more
disks, and perhaps a control socket. This select may have a time-out to ensure that moni-
toring information can be broadcast (e.g. to a central control point).

Alternatively, all monitoring could be provided only in response to a query (avoiding the
time-out handling).

Alternatively, these tasks (GRAB, SAVE and monitoring) could be implemented as
separate threads sharing memory.

4.3 File Format Options

If the data is to be replayed as the original packets (e.g. to a Mark5C) then any internal
file format will work.

If the files are to be delivered directly to, e.g. a software correlator, then the packets
will need either to be saved in some recognized file format (Mark5B, VDIF, ...) or else
converted to that format at playback time. In this case it matters whether the data packets
are already in some recognized format (in which case the sequence of packets without any
additional header or sequence number needs to be written) or else this reformatting needs
to be done.

The VDIF specification includes a 32-byte header of which 16 bytes are available for
"extended" data versions (EDV). As long as the DDS isn’t writing 32-byte headers in the
data packets, then we can register an EDV for use with the burst mode and be assured
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of enough space to save the 8-byte sequence number. The SAVE task can then write the
packets in a fashion such that the 32-byte headers can be finalized in place.

To do this, the SAVE task then needs to only be able to identify the header (if present)
and data array portion of the packets.

As mentioned in See Section 3.1 [grabtask], page 9, the Mark5B compatibility mode emits
packets pairwise so the SAVE task needs to be able to pair them up properly. (This is not
an issue if Mark5B compatibility is not required and if the DDS packets are guaranteed to
be legal VDIF.)

The RDBE can be programmed to provide an 8-byte header (PSN) which precedes the
VLBI payload (i.e. the VDIF or Mark5B packet). This header includes a 4-byte packet
serial number in the lower bits. (It is zero-padded to 8 bytes for Mark5 legacy reasons.) An
upper bit may be set to flag data to be considered not worth saving (invalid or otherwise).
It is probably not necessary to save both serial numbers in whatever is written to file.

Note that there is some advantage to providing the PSN within the VDIF EDV if at all
possible (fewer bytes to transfer).

In this mode, the packets are 5008 bytes in size when the PSN is not present, and 5016
when it is (assuming a 16-byte data header is present)—two packets are required to assemble
a complete data frame (see Figure 4.1).

UDP Header

PSN

VDIF Header

Data Bits

UDP Header

PSN

Data Bits

UDP Header

PSN

VDIF Header

Data Bits

UDP Header

PSN

Data Bits

packet 0 packet 1 packet 2 packet 3

Figure 4.1: The Mark 5C packet stream consists of pairs of packets—the first part has
the Mark5B/VDIF header, the second the remainder of the data. The PSN can be omitted
or placed in arbitrary locations based on command.

4.4 DUMP Task Requirements

The DUMP task is really a collection of utilities that can make the data available in a
variety of contexts. As indicated, if the data is written by the SAVE task in legal VDIF
formatted files and the files can be mounted where they are needed, there is no DUMP task.
Otherwise, the following software capabilities are possibly needed:

• A cleanup utility that can finalize the VDIF packet headers on the files written by the
SAVE task. (Needed if the SAVE task does not write legal VDIF.)
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• A playback daemon that can read the data (as is) and arrange to play the bytes back to
the correlator through some socket connection—possibly in response to time-organized
requests.

• A PUSH task that can replay the packets (at a lower rate than originally transmitted)
to a Mark5C.

This playback daemon includes a task (LOAD, see Section 4.6 [loadreq], page 18) that will
need to know how the data was organized on disk by the SAVE (see Section 4.2 [savereq],
page 15) task.

The PUSH task is discussed next.

4.5 PUSH Task Requirements

The PUSH task needs to know what network protocol to be using (e.g. UDP to a Mark5C
or TCP to a software correlator). It has similar network addressing needs as the GRAB
(see Section 4.1 [grabreq], page 13) task. It uses the same memory buffer that the GRAB
(or LOAD) task uses, and also needs access to the GRAB scheduling (at least at the
initialization stage).

Thus it is governed by something like this:
typedef struct push_state {

char push_addr[128]; /* network address of UDP/TCP */
int push_port; /* the Mark5C uses 2650 */
int push_size; /* must be less than 9000 */
long push_rate; /* packets per second */
int push_type; /* UDP or TCP protocol */

int64_t last_seqn; /* last seqn sent */
void *mem_start; /* start of a buffer */
ssize_t mem_size; /* of some size */
void *mem_read; /* next packet to send */
int mem_chunk; /* bytes read per packet */

int overlap; /* permission to run simultaneously */
int source; /* who is loading mem? GRAB or LOAD */
int push_period; /* a copy of grab’s value */

/* additional working state variables */
} PushState;

The mem_read and last_seqn play an analogous role to GRAB’s corresponding variables.
If GRAB invalidates the data under its write pointer immediately following a mem_write
advancement, PUSH can detect whether it has valid data to send without reference to
GRAB’s state.

4.6 LOAD Task Requirements

The LOAD task will need to know how the data was organized on disk by the SAVE (see
Section 4.2 [savereq], page 15) task:
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typedef struct load_state {
/* disk information */
int load_type; /* RAID or multiple files */
char *scan_label; /* a label for the saved files */
int load_size; /* bytes read per packet */
int num_files; /* number of files/disks to use */
long file_index; /* sequential file counter */
char *path[BMR_MAX_FILES];
/* log information, &c */

} LoadState;

It will need further information depending on whether playback is sequential (i.e. how to
locate the packets based on serial numbers and files written as recorded in the log file)
or time-ordered (in which case it will need to build an index of the times ranges of files
and offsets). In any case, it will need to coordinate its activities with the (PUSH) task
responsible for delivering the packets.

4.7 Control Requirements

There is a need for local control (of one burst mode unit) and global control (of many such
units); both needs can be met with a common "client" application that talks to the burst
mode servers (e.g. on a TCP/IP socket). This client could take input from stdin to issue
commands as required.

A GUI may be desirable.
It may be that the burst mode system also controls its corresponding DDS.

4.8 Monitor Requirements

Each burst mode system could periodically emit a packet of current status to any attached
"clients", or alternatively, it could do this in response to a query request.

Autonomous monitoring of the disk system is desirable.
It may be that the burst mode system also monitors its corresponding DDS.

4.9 Initial Implementation

As an initial implementation, the GRAB/SAVE tasks could be combined into one (Linux)
process (bmr_record) selecting on a command (TCP/IP) port, a UDP socket, and (possi-
bly multiple) disk file descriptors. A separate client process could be used for command-
ing/monitoring.

For playback, a LOAD/PUSH tasks could be combined into a process (bmr_replay)
that could read what the SAVE task has written and provide a metered replay of the data
in the same order as it was captured, but limited to some lower data rate. This task could
then playback data to a single Mark5C. Again, it makes sense to implement this with a
client/server model.

The working part of PUSH could also be integrated with GRAB to provide a disk-
less GRAB/PUSH version of the burst mode (bmr_buffer) that would store data to the
Mark5C.
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For testing purposes, a FAKE module could be used as a replacement for LOAD or
GRAB.

All of these tasks could use a simple, common command/response protocol (e.g. num-
bered commands and numbered responses) to implement the commands of Section 3.4
[misctask], page 12. If polled status were required, the client could be made responsible for
emitting periodic requests.

The initial implementation could be single-threaded; however, it may ultimately be most
efficient to isolate the separate tasks in individual threads of a multithreaded application.
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5 Implementation Details

In this section we discuss actual implementation details.

5.1 Source Code Tree

Conventionally the code source references a tree root $BMR_ROOT which can be anywhere.
You need not define it to carry out the following bootstrap steps—the variable is used in
the examples here for clarity.

The source code is in an SVN repository available from vault.haystack.mit.edu (as
svn+ssh://vault/svnrepos/burst/trunk checked out to $BMR_ROOT/trunk).

From withn the source tree, one runs the usual configuration scripts

$ aclocal
$ autoconf
$ autoheader
$ automake -a

to set up the source directory and create the configure script. Then the build is configured
in a separate build directory (e.g. $BMR_ROOT/bld)

$ mkdir $BMR_ROOT/bld
$ cd $BMR_ROOT/bld
$ $BMR_ROOT/trunk/configure
$ make check install

This performs (currently minimal) checks and installs build products into a versioned
architecture-dependent subdirectory of $BMR_ROOT. A script bmr.bash is also created to set
up your environment (i.e. add the appropriate bin directory to your PATH). After sourcing
the script, the tools can be run from anywhere (and the build directory is removeable).

The GNU configuration scripts allow the manufacture of a tarball distribution (bmr-
VERSION.tar.gz, which is extracted as ./bmr-VERSION), typically into $BMR_ROOT.

The tarball includes the necessary Makefile.in and configure script (so you don’t
have to run aclocal, autoconf, autoheader or automake). The build process is similar:

$ mkdir $BMR_ROOT/bld-VERSION
$ cd $BMR_ROOT/bld-VERSION
$ $BMR_ROOT/bmr-VERSION/configure
$ make check install

There are SVN checkouts of this software on both of the burst machines. (See
/home/gbc/HBMR on maxwell and monarth). The GNU auto-software also makes tarballs
which are useful for release purposes to capture specific versions.

5.2 A Buffering Server

By combining the GRAB and PUSH tasks, we obtain a server that captures packets and
then immediately pushes them out again. This is the simplest such server, and it is also
useful for some testing.
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# to get command-line help
$ bmr_buffer --help
Usage: bmr_buffer [options]
where the options are:
-v verbose, may be repeated for more
-c cmd initialization command
-f file file of initialization commands

The -c and -f arguments allow bmr_buffer to be configured
before any clients attach. Both are repeatable, and
will provoke a fatal exit if not properly interpreted.

The idea here is that some commands are required to specify the network connectivity
before any clients can attach. Once the server starts, all commands can be issued from
simple TCP clients. The server also converses with stdin/stdout.

For example:

# to get command help
$ (echo help; sleep 1; echo quit) | bmr_buffer
bmr_buffer commands:
quit exits the buffer server
help provides this help
help:server provides help on server configuration
help:grab provides help on grab configuration
help:push provides help on push configuration

cfg:<cmd> caches a (re)configuration command
<cmd> is (server|grab|push):<cmd>

exec:<file> load and cache these commands from some file
dump:<file> saves working configuration to file
reset applies the caches commands

show shows internal state information
info shows state and additional data
counters shows various packet/byte counters
rates shows grab / push rates

# to get a loadable inititalization file test.bmr
$ (echo dump:test.bmr ; sleep 1; echo quit) | bmr_buffer

Notice that in addition to the grab and push configuration commands, there is also a server
portion that binds them together.

Sample invocation examples were shown in See Section 2.2 [bench1], page 6.

5.3 A Burst Recorder Server

By combining the GRAB and SAVE tasks, we obtain a server that captures packets and
then, on the off cycle, writes the packets to disk.
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# to get command-line help
$ bmr_record --help
Usage: bmr_record [options]
where the options are:
-v verbose, may be repeated for more
-c cmd initialization command
-f file file of initialization commands

The -c and -f arguments allow bmr_record to be configured
before any clients attach. Both are repeatable, and
will provoke a fatal exit if not properly interpreted.

As with bmr_buffer, some commands are required to specify the network connectivity
before any clients can attach. Once the server starts, all commands can be issued from
simple TCP clients. The server also converses with stdin/stdout.

For example:
# to get command help
$ (echo help; sleep 1; echo quit) | bmr_record
bmr_record commands:
quit exits the record server
help provides this help
help:server provides help on server configuration
help:grab provides help on grab configuration
help:save provides help on save configuration

cfg:<cmd> caches a (re)configuration command
<cmd> is (server|grab|save):<cmd>

exec:<file> load and cache these commands from some file
dump:<file> saves working configuration to file
reset applies the caches commands

show shows internal state information
info shows state and additional data
counters shows various packet/byte counters
rates shows grab / save rates

# to get a loadable inititalization file test.bmr
$ (echo dump:test.bmr ; sleep 1; echo quit) | bmr_record

Notice that in addition to the grab and save configuration commands, there is also a server
portion that binds them together.

For testing purposes, it has been convenient to drive bmr_record using a simple shell
script. (In the course of testing, there are many options that get tried, so the script ends up
being rather more complicated than would be used for a simple observing run.) The most
recent such scripts (found in the testcode area of the source) are record-X.sh and record-
vdif.sh. The latter was used with the Astro8Gbps RDBE-S image, and was typically invoked
as follows:
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( pushd /home/gbc/HBMR/Test ;
for S in CC DD EE FF ; do record-vdif.sh $S eval 5 4 20 & done )

In this incantation, four bmr_record processes were launched—one for each of 4 threads.
For testing reasons, the threads were considered to be data from 4 separate stations (CC,
DD, EE and FF). The numbers select 5 cycles of 4-second captures with 20-second periods.
(Obviously the numbers can be varied.) The default "start" time is 5 seconds from "now".
The script automatically numbers the files so that previous results are not overwritten, and
it polls the servers periodically for performance statistics. (This is a testing mode.)

In addition, it is useful to make various checks of the recorded data—a testing code
fchk_test was written to test various aspects of the various data packet types recorded:

$ fchk_test --help
Usage: fchk_test [options] action
where the options are:
-v verbose, may be repeated for more
-c <string> configure the checker

will check files and report on what it finds.

The various configuration commands (all are intended for checking the data or the burst
mode software, and are rather ad hoc):

$ fchk_test -c help
Available configuration options:
f=<int><string> format of the data frames

(int = 0, 1, ... for raw, pkt, ...)
(string = m5b or vdx)

n=<float> number of frames to read (0 = all)
p=<int> level of packet display (0, 1, ...)
s=<int> size of data frame
t=<int> 0 = use thread ID, 1 = usechannel id
x=<int> mask of channel/thread to skip (1,2,4,8)
h=<int> size of skip to notice (0 == any)
r=<int> frames per second (31250)
g=<int>,<int> frames to process,skip for bit stats (0,0)

so consulting the source code is presently required to make sense of the output. (This is a
work in progress....)

5.4 Code Sources

There are quite a number of header and code files for such a simple server. In this section
we mention what is to be found in each file. Note that the LOAD task is at present
undeveloped, so those files are mostly full of boilerplate, starter code.

The headers are

bmr common.h Includes common things needed everywhere.
bmr util.h Declarations of some simple utilities.
bmr server.h General server declarations.
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buffer server.h Buffer-specific declarations.
grab task.h Declarations for the GRAB task.
push task.h Declarations for the PUSH task.
save task.h Declarations for the SAVE task.
load task.h Declarations for the LOAD task.
The general server code modules are:
bmr util.c Implements some simple utilities.
bmr cache.c Caches command-line commands for eventual setup.
bmr parser.c Parsers general server commands.
bmr server.c Implements the general client-server code.
The bmr_buffer-specific code modules are:
buffer main.c The main() boilerplate.
buffer server.c Implements the GRAB+PUSH server.
buffer parser.c Interprets commands.
buffer info.c Generates printouts of internal state.
Finally, each of the tasks (GRAB, PUSH, SAVE ...) includes three modules:
TASK task.c The core implementation of the task.
TASK parser.c Routines for parsing its commands.
TASK info.c Routines for describing its internal state.
where TASK refers to grab, push, save .... Not all modules have been developed or tested
in all possible cases.

5.5 Debian System Modifications

The newest burst mode system began life as a "Lenny" distribution, then was reinstalled
as a "Sid" (unstable) distribution, and finally as a "Squeeze" (6.0) Debian distribution.
Starting from the vanilla distribution, the following changes were required:
• local network changes (the domain and name-server information in /etc/resolv.conf,

adding local ntp server(s) in /etc/ntp.conf)
• 10 GbE network changes (/etc/network/interfaces)
• packet parameter tuning (/etc/sysctl.d/bmr.conf)
• CPU frequency tuning (it is disabled by default, so it must be enabled; in

addition the governor must be changed from "ondemand" to "performance" in
/etc/default/cpufrequtils; there is a BIOS option that must also be activated to
enable this)

At present the network ARP/IP addressing scheme is completely manual. Aside from assign-
ment of the local network interface to something sensible, the /etc/network/interfaces
file is typically modified to specify the network addressing of the 10 GbE ports. Note that
the UDEV device management rules sometimes renumber the network interfaces, so a file
such as 70-persistent-net.rules placed in /etc/udev/rules.d is typically desirable for
consistent performance across reboots. This file has entries of the form:

# PCI device 0x8086:0x10dd (ixgbe)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
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ATTR{address}=="00:25:90:0b:c6:7e", ATTR{dev_id}=="0x0",
ATTR{type}=="1", KERNEL=="eth*", NAME="eth2"

(all one line, however) to force the association of the port with MAC address
00:25:90:0b:c6:7e to device eth2. Then in the /etc/network/interfaces file an entry
such as:

allow-hotplug eth2
iface eth2 inet static
address 192.168.5.102
netmask 255.255.255.248
network 192.168.5.96
broadcast 192.168.5.103
mtu 9000

provides the information for one of the 10 GbE CX4 cables so that this interface can be
easily managed with the ifup and ifdown command scripts.

The packet tuning is of the "net.core" sysctl parameters:
net.core.rmem_max = 16777216
net.core.rmem_default = 8388608
net.core.netdev_max_backlog = 1000

Finally, a rather long list of packages were installed as approprate to a development system.
This system was also used as part of a DiFX software correlation cluster (more convenient
for analyzing the data), and also with HOPS, and also for RDBE development; so a number
of additional modules are needed for those.

The complete list of apt commands applied (more or less in this order) was:

apt-get install apt-file
apt-file update

# general system tools:
apt-get install sysfsutils mdadm xfsprogs xfsdump sysstat tcpdump

apt-get install gcc make
apt-get install autoconf automake libtool libtool-doc
apt-get install rsync subversion subversion-tools

# things needed for DiFX:
apt-get install g++
apt-get install g++-multilib
apt-get install libstdc++6-4.4-dbg libstdc++6-4.4-doc
apt-get install lib32stdc++6-4.4-dbg lib32mudflap0

apt-get install gfortran
apt-get install gfortran-multilib

apt-get install flex bison gdb
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apt-get install valgrind
apt-get install vim vim-scripts vim-doc

apt-get install openmpi-bin openmpi-common \
openmpi-dbg openmpi-dev openmpi-libs0 \

openmpi-checkpoint openmpi-mpidoc
apt-get install libexpat1-dev fftw3 fftw3-dev
apt-get install sysv-rc-conf chkconfig
apt-get install kernel-package ia32-libs ia32-libs-dev

# required for HOPS:
apt-get install pgplot5
apt-get install libx11-dev libpng12-dev
apt-get install ghostscript-x ghostscript-doc
apt-get install psutils

# required for RDBE development:
apt-get install ckermit gkermit
apt-get install gnuplot-x11 python-gnuplot
apt-get install wireshark wireshark-common wireshark-dbg wireshark-dev
aptitude install ethtool
apt-get install libgsl0-dev libgsl0-dbg
apt-get install python-tk python-pmw python-matplotlib

# for disk performance testing:
aptitude install fio

apt-get update

The older system has a similar set of packages. However, the kernel on that machine was
built (as an optimization) without a number of things (e.g. X11) so it is not as easy to use
for some things. Note also that the DiFX operation is presently in 32-bit mode on these
machines (requiring the 32-bit emuation packages that are not otherwise needed).

No other tuning of the operating system is required for testing or short scans. However,
the creation of hugepages and their use with the application would probably be a logical
next step to provide more robust use of the full installed memory of the system. The
application can then use these pages if it is given appropriate permissions, and uses mmap
for access to the memory rather than malloc. This has not yet been done.

5.6 Setting up Software RAID

From the viewpoint of disks misbehaving, it is best to write the data out to independent
filesystems (so that if one disk goes bad, the others are not affected). For testing in environ-
ments where the disks can be expected to behave (i.e. well below 10000 feet) a sofware raid
system can be fast and efficient. We have used the XFS filesystem—it is relatively efficient
for our needs.
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With multiple disks a larger "volume" for the filesystem can be assembled with the
mdadm command. (You may need to install the mdadm package to get the necessary tools.)
The cfdisk is preferred (these days) for partitioning/labelling the bare disks.

The raid is created/managed with mdadm, e.g. with:
mdadm --create /dev/md0 --level=0 --raid-devices=8 /dev/sd[b-i]1

Thereafter, the kernel will automatically start the array at boot time. You can
stop/start/study it with

mdadm -S /dev/md0
mdadm -A /dev/md0
mdadm --query --detail /dev/md0
mdadm --detail --scan

and so forth—see the man page for further details. The array state is typically captured
in /etc/mdadm/mdadm.conf using information gathered in a "scan". The system log file
/var/log/messages has additional detail on what is involved. The mdadm mechanisms do
appear to be able to identify disks so that they may be removed and re-inserted in arbitrary
locations without destroying the data.

Once the raid is created, an XFS filesystem can be built with:
mkfs.xfs -f /dev/md0
mount -t xfs /dev/md0 /mnt/raid

and mounted in the usual way. It can of course be added to /etc/fstab for mounting at
boot time.
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6 Some RDBE-S Usage Notes

In this section are captured a few usage notes for the RDBE-S environment. There are often
many ways to accomplish the same thing (e.g. loading a personality) and the tools are still
under development, so this chapter reflects what was done, rather than what should have
been done.

There may be better/more complete documentation for things-RDBE-S elsewhere.

6.1 General RDBE-S Considerations

The Roach Digital Back End (RDBE) connects to the analog RF feeds (IFs) from the re-
ceiver/downconverter, samples and packetizes the signal, and presents the digital data as
UDP packets on one or more 10 GbE interfaces. While the term RDBE refers to a specific
hardware configuration (as defined by NRAO and Haystack), more generally developmental
RDBEs differ both in terms of the hardware options (e.g. number of ADC boards, type of syn-
thesizer, &c) as well as the "personality" loaded into the FPGA that does the post-sampling
digital work. The work described in this memo is focussed on one particular "personality"
(Astro8Gbps), viz a version that works with an RDBE-S (a particular configuration of hard-
ware not to be confused with an RDBE) equipped with 4 512 MHz inputs, sampling driven
by the Haystack 1024 MHz synthesizer to produce 4 "threads" of data on two CX4 10 GbE
cables (RDBE-S). More about all that later (see Section 6.3 [astro rdbe], page 30). Hereafter
we’ll use the term RDBE-S to refer to the hardward with this personality.

The RDBE-S boots with support from a network filesystem or from a local USB drive—the
network IP address is often assigned by DHCP. If the system does not come up right away,
you may need to connect to it on a serial line via Kermit (see Section 6.2 [kermit rdbe],
page 30).

The "personality" is stored as a binary file, which should be stored in the subdirectory
personalities in the roach user directory. In addition, a configuration file (with a similar
name) can be stored in the conf subdirectory. This file can be executed at initialization
time. After reboot, or if it dies, the server for the RDBE-S needs to be launched, typically
with:

bin/rdbe_server 5000 6

specifying the port (and number of allowed clients) at which the server will listen for com-
mands.

There are some diagnostics available over the normal network (1 GbE) interface. The
script bpplotter_rdbe.py provides diagnositics on the raw sampling.

When the server is running, one may connect to it with any of the various clients to
carry on a text-based conversation. For example:

$ ./rdbe_client.py -h 192.52.61.117
Host: 192.52.61.117 port: 5000
>> dbe_personality?
<< !dbe_personality?0:pfba:RoachAstro8GbsJan26.bin;

>> dbe_execute=init;
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<< !dbe_execute=0;

should connect to the RDBE-S at 192.52.61.117 and have it load and initialize the named
personality. The dbe_execute=init command will only work properly if valid configuration
file exists for the personality loaded. Alternatively the commands to configure the RDBE-S
personality can be loaded one at a time via one or more scripts.

6.2 Access to RDBE-S via Kermit

If you need to talk to the RDBE-S directly over the serial port, kermit is useful. Typically
you’ll have something like the following in the initialization file

$ cat /home/$user/kermrc
set modem type none
set line /dev/ttyUSB0
set speed 115200
set parity none
set stop-bits 1
set carrier-watch off
set handshake none
set flow-control none
robust

so that kermit /home/$user/kermrc will just connect you to a command line prompt.
From there you can figure out what’s wrong and fix it. If it’s a simple DHCP issue, ifconfig
can tell you what address was assigned, and you can use that to connect normally.

6.3 Astro RDBE-S Considerations

The Astro8Gbps personality went through a number of revisions—the version current at
this time this memo was written is RoachAstro8GbpsJan26. It presents the samples from
the four IFs as four VDIF "threads" of UDP packets presented to two of the 10 GbE
interfaces. There are commands to support some customization of the header fields for the
VDIF packets, and also a means of setting the seconds-of-epoch counter.

A number of "future" commands and capabilities for this personality have yet to be
implemented. (I.e. we focussed on the minimum necessary for this testing.)

We found it convenient (and less confusing) to properly place each cable on its own
(3-bit) subnet to avoid any confusion in the IP address space. One can then easily verify
the network traffic with either tcpdump (command-line) or wireshark (graphical):

$ tcpdump -c 1 -x -s 84 -i eth4

...

09:58:24.813516 IP 192.168.5.101.65535 > 192.168.5.102.4203: UDP, length 8224

0x0000: 4500 203c 0000 4000 ff11 cf94 c0a8 0565

0x0010: c0a8 0566 ffff 106b 2028 0000 1e00 0000

0x0020: be54 0014 0404 0000 4545 0204 0000 0000

0x0030: 0000 0000 24df 7110 ecde adab

...

09:58:31.169577 IP 192.168.5.101.65535 > 192.168.5.102.4201: UDP, length 8224

0x0000: 4500 203c 0000 4000 ff11 cf94 c0a8 0565

0x0010: c0a8 0566 ffff 1069 2028 0000 2500 0000

0x0020: 6005 0014 0404 0000 4343 0004 0000 0000
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0x0030: 0000 0000 44e6 7410 eade adab

...

$ tcpdump -c 1 -x -s 84 -i eth5

...

09:58:35.609527 IP 192.168.5.109.65535 > 192.168.5.110.4202: UDP, length 8224

0x0000: 4500 203c 0000 4000 ff11 cf84 c0a8 056d

0x0010: c0a8 056e ffff 106a 2028 0000 2900 0000

0x0020: 8f3a 0014 0404 0000 4444 0104 0000 0000

0x0030: 0000 0000 bb03 7710 ebde adab

...

09:58:37.641568 IP 192.168.5.109.65535 > 192.168.5.110.4204: UDP, length 8224

0x0000: 4500 203c 0000 4000 ff11 cf84 c0a8 056d

0x0010: c0a8 056e ffff 106c 2028 0000 2b00 0000

0x0020: 363e 0014 0404 0000 4646 0304 0000 0000

0x0030: 0000 0000 86fb 7710 edde adab

...

which allows the verification that the VDIF headers are also ok. So for example, the hex-
dump from tcpdump for the first packet (noting that tcpdump outputs in network order, not
host or VDIF order, which is littlendian for both in this case):

1e00 0000 word0 ok (secs from ref epoch)
be54 0014 word1 0000 ref epoch is 0014 (early 2010)
0404 0000 word2 ok (data len/8)
4646 0304 word3 ok (station FF, thread 3, bpsm1)
0000 0000 word4 ok (unused)
0000 0000 word5 ok (unused)
24df 7110 word6 ok (psn)
ecde adab word7 ok (sanity clause: abad dee[abcd])

may be compared with the VDIF header as shown in Figure 6.1.

0 000

0 000

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

31 024 23 16 15 78
Byte 3 Byte 2 Byte 1 Byte 0

0 0 Seconds from Reference Epoch

Reference Epoch Data Frame # within second

0 Data Frame Length (octects; 8224 = 0x404)

0 Station IDThread ID

00

00 0

1

Packet Serial Number (PSN)

0xA − 0xD0xE0xD0xD0xA0xB0xA 0xE

Figure 6.1: VDIF Header as used by the Astro8Gbps image. The red-shaded areas are
configurable, the blue-shaded areas are dynamic (i.e. changing with each packet), and the
green areas are fixed by the personality.
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The current burst mode software writes the bits of its internal sequence number into the
unused bits of the extended header (3 lowest bytes of word 4 and all of word 5) for debugging
purposes, shaded yellow in Figure 6.1. In this example, the 4 cables are on subnets of
192.168.5, and the 4 threads were arbitrarily also labelled as stations CC, DD, EE and
FF. The PSN is embedded in unused words of the Extended header (word6) and the last
word is a magic number (0xabaddeed) that helps identify the channels and endianism.

There are several paths to setting up the Astro8Gbps image. In development a number
of scripts were used to program the Astro8Gbps image using direct writes to the FPGA
registers. (E.g. BRAINS.sh to shoot it in the head, STATUS.sh to get status—these scripts
reside on Nugget, the development host.)

For testing purposes, it was (ultimately) useful to modify the client script to take input
from a configuration generator (make-rdbe-conf.sh), and to pass the result to a parser to
calculate the bit states. Then a script could be launched to capture sample data which could
be post-processed to check the bit states. Finally, with suitable "noise" data, a zero-baseline
test could be processed with DiFX (see Chapter 7 [difxzbt], page 37).

6.4 An Example Test Session

A complete (zero-baseline) test session can thus be launched with:

$ ssh maxwell
...

# not essential, but the configuration is written out here
cd ~/HBMR/Test

# launch the raw sample statistics analyzer
bpplotter_rdbe.py &

# program the RDBE-S with this personality:
make-rdbe-conf.sh ccddeeff temp RoachAstro8GbsJan26.bin |\
rdbe_setup.py -h 192.52.61.117 -v 1 | bitstatus.py

# launch the recording script 4 times; the environment
# variables provide hints to the script
# export SAVE_VERS=$NN or unset SAVE_VERS
export SAVE_PATH=/mnt/raid/vdif3
export LABEL=vv
for S in cc dd ee ff ; do record-vdif.sh $S eval 1 3 6 & done
bstats-vdif.sh {NN..MM}

As mentioned previously, bpplotter_rdbe.py is a tool to examine the "raw capture" data.

The make-rdbe-conf.sh is a script to manufacture the "init" configuration commands.
The existing version makes an attempt to set the epoch using a helper program bmr_time to
convert from the local (NTP-sync’d) UNIX clock to the VDIF six-month epoch and seconds
of epoch time. For convenience, this time is represented as Epoch@seconds.subseconds in
printouts.
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This script ends by launching commands to report the bit states captured in the
gain/threshold calculation—the script bitstatus.py processes the raw hex output in
a relatively trivial to get more useful quantities to look at. The environment variables
(SAVE_PATH and LABEL) are used to pass file-naming hints to the record-vdif.sh.

The bstats-vdif.sh post-processes the data files captured and provides some input to
streamline the DiFX analysis. In particular, these test were done without setting the RDBE-S
time to the correct absolute time, so the time of the scan start needs to be found. So, at
the time of the reset, the RDBE-S thinks it is at the beginning of the epoch.

So, for example, on "Run 11" the scans started 86 seconds into epoch 22 (that would be
the first half of 2011—because that’s what it was told, and the reset was 86 seconds prior
to this example being captured):

# this is the output from bitstatus.py:

ifplus ifminus counts gain

+0.0773926 -0.0773926 697413 1.03643

+0.0778885 -0.0778885 705020 1.02140

+0.0701981 -0.0701981 692614 1.04591

+0.0698853 -0.0698853 726007 0.97993

# this is the output from bstats-vdif.sh 11

Run 11 (bit statistics on 1000 frames)

22@86.535168 BS[0] 0.181 0.325 0.340 0.153 (66.5% 32.768 Ms) [697475/1Ms]

22@86.535104 BS[1] 0.209 0.346 0.330 0.115 (67.5% 32.768 Ms) [708204/1Ms]

22@86.535168 BS[2] 0.182 0.319 0.342 0.157 (66.2% 32.768 Ms) [693650/1Ms]

22@86.535168 BS[3] 0.167 0.348 0.353 0.132 (70.2% 32.768 Ms) [735627/1Ms]

vv*11) NN=11

mjdStart=55562.0010015643

mjdStop=55562.0010478605

scanStart=2011y001d00h01m26s

;;

The "counts" column from bitstatus.py and the final column of the bstats-vdif.sh
script output show that both the ADC gain programming and the resultant data are con-
sistent. (E.g. thread 0 has 66.5% of the data in the low states 697475 of 1024^2 samples).

The ADC logic is attempting to place the same number of samples into the low states—
that it is not working as well as expected for the examples shown in this memo is a known
bug that is being resolved.

The companion to the output from the bstats-vdif.sh script is a DiFX launcher script,
./vdifnoise.sh, which takes input from a file (./vdifn_par.sh) providing the start/stop
times (via a huge case statement) for the individual runs. Then

$ ssh smm-pc
cd ~/DiFX/Test
DIFX_GRINDERS=’smm-pc maxwell monarth’ DIFX_NPROCESS=11 NCHAN=512 \

./vdifnoise.sh vv11

is all that is required to launch a DiFX correlation/analysis run to process "Run 11". The
DiFX results are discussed later (see Chapter 7 [difxzbt], page 37).

It should be noted that the burst recorder is running "open-loop". The RDBE-S is
configured to always generate packets, so the GRAB/SAVE logic is driven by the host
computer clock (NTP synchronized).
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The RDBE-S itself (when deployed in the field) should have valid PPS and 10 MHz inputs
so that the data is properly time-tagged. (Well, in this case it’s off by some large number
of seconds-of-epoch since we haven’t told the RDBE-S what time it is.) However, in testing,
the PPS is provided by a noise generator with an arbitrary offset from proper UTC ticks.

So, the start of data and end of data for each cycle of the burst mode scan are not
precisely correlated with the 1-second boundary on the host computer, and in any case are
only near the PPS boundary provided: they are "sloppy" by several ms due to packets
already queued for reception at the time the GRAB cycle starts and the lack of precision
with which the GRAB cycles are launched.

The fchk_test has a number of capabilities for checking the data. The incantation (for
a later "Run 26"):

for f in /mnt/raid/vdif3/vdif_??_26.vdif
do fchk_test -cf=4vdx -cs=8224 -cg=1000 $f ; done

produces a listing of scans in each of the 4 files:
Scan-0 0 22@15230.622176 to 22@15233.619168 for 2.996992 s, 93658 fr File 0

Scan-0 1 22@15243.610912 to 22@15246.606368 for 2.995456 s, 93609 fr File 0

Scan-0 2 22@15256.598080 to 22@15259.593568 for 2.995488 s, 93608 fr File 0

Scan-0 3 22@15269.606912 to 22@15272.580800 for 2.973888 s, 92935 fr File 0

Scan-0 4 22@15282.572576 to 22@15285.567936 for 2.995360 s, 93606 fr File 0

Scan-0 5 22@15295.572832 to 22@15298.555104 for 2.982272 s, 93195 fr File 0

Scan-1 0 22@15230.622144 to 22@15233.619072 for 2.996928 s, 93656 fr File 1

Scan-1 1 22@15243.610944 to 22@15246.606336 for 2.995392 s, 93353 fr File 1

Scan-1 2 22@15256.598080 to 22@15259.593536 for 2.995456 s, 93607 fr File 1

Scan-1 3 22@15269.586336 to 22@15272.580704 for 2.994368 s, 93575 fr File 1

Scan-1 4 22@15282.576480 to 22@15285.567904 for 2.991424 s, 93482 fr File 1

Scan-1 5 22@15295.567808 to 22@15298.555136 for 2.987328 s, 93355 fr File 1

Scan-2 0 22@15230.622112 to 22@15233.619136 for 2.997024 s, 93659 fr File 2

Scan-2 1 22@15243.616448 to 22@15246.606336 for 2.989888 s, 93435 fr File 2

Scan-2 2 22@15256.616448 to 22@15259.593568 for 2.977120 s, 93035 fr File 2

Scan-2 3 22@15269.585248 to 22@15272.580768 for 2.995520 s, 93610 fr File 2

Scan-2 4 22@15282.584512 to 22@15285.567904 for 2.983392 s, 93230 fr File 2

Scan-2 5 22@15295.559712 to 22@15298.555168 for 2.995456 s, 93608 fr File 2

Scan-3 0 22@15230.622080 to 22@15233.619168 for 2.997088 s, 93661 fr File 3

Scan-3 1 22@15243.623296 to 22@15246.606304 for 2.983008 s, 93220 fr File 3

Scan-3 2 22@15256.616544 to 22@15259.593568 for 2.977024 s, 93033 fr File 3

Scan-3 3 22@15269.602304 to 22@15272.580704 for 2.978400 s, 93076 fr File 3

Scan-3 4 22@15282.590208 to 22@15285.567968 for 2.977760 s, 93056 fr File 3

Scan-3 5 22@15295.559648 to 22@15298.555168 for 2.995520 s, 93609 fr File 3

So in this case, 6 cycles of 3-second scans is falling short by a dozen ms. DiFX does not
care about this. (Should anyone else care, this can be solved by adding the record on/off
capability back into the Astro8Gbps personality.)

6.5 Sample BMR Commands for Astro Test

For completeness, it’s probably worth reviewing the BMR commands used in "Run 11".
The record-vdif.sh script launches 4 copies of bmr_record (one to listen for each thread).
Each is configured, and a copy of the configuration is dumped to a file. Here is the content
of that file, with comments inserted to explain what the commands mean (in the current
version of the code—remember, not all the functionality has been implemented).

##
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## GRAB commands

##

grab:addr=192.168.5.102 # this is the IP address for packets

grab:port=4201 # this is the UDP Port for packets

grab:size=8224 # i.e. 32 header + 8192 data bytes

grab:rate=30398 # limit: (approx) packets per second

grab:mbps=1999.95 # limit: (approx) MB per second

grab:gbps=1.99995 # limit: (approx) GB per second

grab:type=1 # mem_type: see bmr_files.h

grab:start=1297373092 # unix clock start time: 2011y041d21h24m52.0000s

grab:stop=1297373267 # unix clock stop time: 2011y041d21h27m47.0000s

grab:secs=8 # capture duration (secs)

grab:flush=1 # 1-sec of packet flushing prior to grab

grab:period=35 # cycle duration (secs)

grab:tognet=1 # activates an optimization on sockets

##

## SAVE commands

##

save:save_type=1 # mem_type: see bmr_files.h

save:expr_name=vdif # name of experiment

save:stn_name=cc # name of station

save:scan_name=11 # name of scan

save:scan_suffix= # optional suffix to scan lable

save:scan_label=vdif_cc_11 # complete scan (file) label

save:num_files=1 # number of files to use

save:path[0]=/mnt/raid/vdif2 # path to the files

save:rate=74880 # limit: (approx) packets per second

save:mbss=4926.5 # limit: (approx) MB per second

save:gbss=4.9265 # limit: (approx) GB per second

save:ppgroup=128 # packets per group write (unused)

save:file_fmt=4 # output file format, see bmr_files.h

##

## SRVR commands

##

server:std_input=1 # allow stdin commanding

server:tcp_port=4401 # listen port for clients

server:max_clients=10 # 11’s a crowd

server:sel_to=0.500000 # polling timeout on commands

server:lfile=(null) # log file

server:dfile=(null) # debugging file

##

## eof

##

As indicated, some of these commands exist for future developments, or to support (earlier)
developmental options. In particular, the original implementation supported Mark5B em-
ulation, but that mode hasn’t been used in a while, so not all the pathways are (correctly)
supported for that data....

As indicated previously (see Section 5.3 [bmr record], page 22), limited help on the
various tasks is available. For the GRAB task:

$ bmr_record -c grab:help

The GRAB configuration commands are:

grab:addr=<addr> # specify receiving IP addr or ETH device

grab:port=<int> # specify the UDP port receiving packets

grab:size=<int> # specify size of all UDP packets

grab:rate=<int> # specify packet rate (packets per sec)
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grab:mbps=<float> # specify packet rate (Mbps)

grab:gbps=<float> # specify packet rate (Gbps)

grab:type=<int> # specify packet memory model

grab:start=<time> # specify starting time

grab:stop=<time> # specify stopping time

grab:secs=<int> # specify capturing duration (secs)

grab:flush=<int> # specify packet flushing (secs)

grab:period=<int> # specify cycle duration (secs)

grab:tognet=<int> # specify data socket toggling

grab:help # provides this message

grab:show # displays GRAB state

grab:default # resets to a default state

grab:apply # applies all commands

grab:quit # provokes a fatal error

and for the SAVE task:
$ bmr_record -c save:help

The SAVE configuration commands are:

save:save_type=<int> # (0|1|2) for (Files|Raid0|Raid5)

save:scan_label=<string> # name of the scan for files

save:expr_name=<string> # name of the experiment

save:stn_name=<string> # name of the station (files/vdif)

save:scan_name=<string> # name of the scan (for files)

save:scan_suffix=<string># optional suffix to scan label

save:num_files=<int> # number of output files to use

save:path[N]=<string> # path to the Nth directory

save:rate=<long> # specify packet rate (pps)

save:mbps=<float> # specify packet rate (Mbps)

save:gbps=<float> # specify packet rate (Gbps)

save:ppgroup=<int> # number of packets to write together

save:file_fmt=<int> # 0: raw packet with seq nums

# 1: pkt packet only is saved

# 2: vdf version 0 VDIF

# 3: vdx extended VDIF

save:help # provides this message

save:show # displays SAVE state

save:default # resets to a default state

save:apply # applies all commands

save:quit # provokes a fatal error

and finally for the server portion (should there be a need to configure it):
$ bmr_record -c server:help

The SRVR configuration commands are:

server:std_input=<int> # nonzero to connect stdio/stdout

server:tcp_port=<int> # TCP port server listens on (2651)

server:max_clients=<int> # max number of TCP/UDP fd’s

server:sel_to=<float> # max commanding latency (<1.0s)

server:lfile=<file> # file for general status logging

server:dfile=<file> # file for server dispatch debugging

server:help # provides this message

server:show # displays SRVR state

server:default # resets to a default state

server:apply # applies all commands

server:quit # provokes a fatal error
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7 Four-station Zero-Baseline Test with DiFX

This section describes some of the testing with the Astro8Gbps image carried out from Nov
2010 through Feb 2011. This "personality" was spawned from the geodesy development
thread and eventually matured into something rather different. The two most significant
differences are that the data packets are in the VDIF format and that there is no internal
filterbank to subdivide the 512 MHz IFs into multiple channels. On the other hand, this
personality is able to process 4 such IFs.

A number of minor issues were found and fixed in the development process; we won’t
dwell on those here. Rather we’ll focus on results obtained with the "Jan26" revision of
the personality. Aside a few minor commanding issues (i.e. the convenient "arming" of the
RDBE-S with the UTC time), there are at present two significant known issues:
• There is an unpredictable sample misalignement (typically 2 ns) between the two ADC

cards
• The setting of the gain/thresholds for the proper bit statistics is not as accurate as it

should be.

These effects result from timing issues at the ADC/FPGA interface, and fixes are under
discussion and are likely to be resolved in the next revision. Here we will focus on the
results obtained (Feb 2011) with the "Jan26" revision.

7.1 Test Hardware

A single noise source (see Figure 7.1) was available for these tests. In addition to the noise
output, the unit also provides a 5 MHz clock and a 1 PPS tick. Switches on the front panel
can attenuate the noise output from a nominal level down by an addition 31.5 dB.

Figure 7.1: The noise source used in these tests provides suitibly amplified noise, 5 MHz
and 1 PPS signals on 3 cables.

With only one source, and only one RDBE-S, we decided to treat the four 512 MHz
threads as if they were separate "stations". Thus this was in effect a zero baseline test with
6 baselines. Since this involves splitting the noise signal four ways (6 dB loss), an amplifier
was added to the noise source.
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The four cables from the noise source were connected to the RDBE-S as shown in Figure
See Figure 7.2. The PPS and 5 MHz lines were directly connected to the synthesizer
(nearest board on the right). The noise signal was connected to the middle, source port (3)
of the Minicircuits ZN4PD1-50+ splitter. The four output ports (1, 2, 4 and 5) were then
connected to the four IF inputs on the 2 ADC boards. The details of the cable arrangements
are discussed later (see Section 7.5 [zbt cable delays], page 44).

For some of the testing, a signal generator (not shown) was coupled (with a Minicircuits
ZFSC-2-2 coupler) into the noise source to provide a broad-band signal with a single tone.

Figure 7.2: The RDBE-S used for testing. The 3 cables draped across the unit come from
the noise source and provide signal, 5 MHz and PPS.

The signal paths and data streams are as shown in Figure See Figure 7.3. The labelling
of the cables connecting the splitter and the ZDOC inputs (delta, epsilon and zeta) is
explained later (see Section 7.5 [zbt cable delays], page 44).

ZFSC−2
−2

ZDOC−0

ZDOC−1

FPGA

CX4−
1

CX4−
0

S

1

2

1

2

4

5

ZN4P
D1−

50
−S

+

Tone Generator

Noise Signal

+Q

+Q

+I

+I C/0

F/3

E/2

D/1

ε

ζ

δ

Figure 7.3: The signal paths present in the test are show.

On the output side of the RDBE-S, the two CX4 cables (each carrying two logical threads)
are connected to the two ports of the 10 GbE PCI-Express card of the burst mode recorder
(see Figure 7.4). The Astro8Gbps personality has a fixed association of ADC data streams
with the threads present on the CX4 cables. (I.e. the placement of threads on network
IP addresses is not arbitrarily programmable.) The personality was configured to provide
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names in the VDIF headers for these streams as threads 0, 1, 2 and 3 and also as stations
CC, DD, EE, and FF (and lower case was also used). It was ultimately established that
the labelling of threads and stations was consistent.

Figure 7.4: The data packets arrive on the 10 GbE PCI-Express card at the center of
the picture, and are ultimately stored to disk via the I/O card on the left. The video card
and spare 10 GbE card at the right are unused.

7.2 DiFX Setup

As indicated it was sensible to treat the four threads as separate stations (CC, DD, EE
and FF; all in Westford) for correlation with DiFX. An evolving script (vdifnoise.sh) was
written to set up DiFX runs on the nascent Haystack DiFX cluster. Aside from a number
of tedious setup chores, this script manufactures a VEX file suitable for the files present
in each run and makes adjustments to the DiFX input file to handle some issues with the
version of DiFX (ca 2.0 trunk) used.

In particular, these were high SNR tests, so long DiFX runs were not needed—in practice
0.1s of data was adequate to find the single band delays between the "stations". Since
DiFX is expecting integrations to be of multi-second durations (i.e. not arbitrary), this
was accomplished by having 1-second long scans that terminated prematurely. (DiFX has
adequate logic to catch and handle this properly.) Generally, the correlation was carried
out with 512 frequency channels with no averaging. The scan start/stop times were drawn
from the RDBE-S timing (i.e. not reflective of real UTC) and the source was equally bogus
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(4C66.NN at 3h RA, 81 dec Decl. with NN being the number of the run). The "sky"
frequency was arbitrarily set at 8000, and it was checked that the correlations were suitably
indifferent to permutations of USB/LSB, polarization &c. as could be specified in the VEX
file.

After each DiFX correlation, fourfit was run on the output to report the single-band
delay and the correlation strength. The double letter station names were compressed to
a single letter (e.g. CC to C) for the fringe plots. However, as these were single-channel
"observations", the multiband delay and per-channel data was uniformly uninteresting. It
was convenient to carve off the portions of the fringe plot that conveyed useful information.
An example is shown in Figure 7.5.

Figure 7.5: The useful bits of a sample fringe plot for two threads ("stations" CC and
EE). A single tone at 840 MHz was coupled with the broadband noise source.

As can be seen in the figure, the noise spectrum is broad, but not flat. In this case, a
tone at 840 MHz (i.e. the -184 MHz in the LSB Xpower Spectrum plot) was added. The
singleband delay was 4.228 ns as will be discussed later. The correlation was very good
(98.8%).
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7.3 Frequency Checking

A simple VDIF generation tool (vnoise) was written to simulate VDIF output for special
cases (gaussian noise plus one or more pure tones). The processing script was modified
to handle these files equivalently with the "real" data produced by the RDBE-S to provide
additional checks. (Only two stations are needed for this work—adding extra stations is
more processing for no real gain.)

This was most useful to track down minor issues with earlier Astro8Gbps personalities
as well as minor issues with the VDIF tools themselves. For the aid of future debuggers,
the main things that could be done wrong and produce weird behaviors:

• Endian issues (e.g. wrong order of bits/bytes within words)

• Sample representation (i.e. the mapping of the bits of the samples: 00, 01, 10, 11 to
input signal levels)

Figure 7.6: Simulated data for two stations (AA and BB) consisting of 1% correlated
gaussian noise plus five tones was generated, correlated with DiFX and processed with
fourfit. The tones are clearly visible in the cross-power spectrum.

difx-zbt.texi 25 April 2011



Chapter 7: Four-station Zero-Baseline Test with DiFX 42

An example is shown in Figure 7.6 where simulated data for two stations (AA and BB) was
constructed from the command:

vnoise -vvv -d 0.064 \
-t 55,0.01 -t 137,0.02 -t 244,0.015 -t 367,0.008 -t 423,0.009 \
noise_AA_18.vdif noise_BB_18.vdif

where the command-line arguments indicate that (in addition to the default 1%-correlated
gaussian noise) the sample should last 0.064 seconds, and have additional pure sinusoidal
tones place at 55, 137, 244, 367 and 423 MHz with relative amplitudes 0.01, 0.02, 0.015,
0.008 and 0.009. (The 0.064 duration was processed with two 0.032 DiFX sub-integration
intervals.)

As can be seen in the figure, the five tones are clearly identifiable in the cross-power spec-
trum plot (aliased to negative frequencies). The residual single-band delay of 26 picoseconds
is a numerical artifact. The amplitude of the cross correlation (1.034%) is dominated by
the gaussian component (1.000%).

As indicated, the experimental setup allowed the coupling of a single tone into the noise
signal. Through repeated scans with the RDBE-S/BMR setup, one could verify that the
tones were appearing at the proper locations in frequency space (see Figure 7.7). The
figure is constructed from the raw DiFX output (Swinbourne format) for a single correlation
interval (0.032 seconds) on each of six scans.

Figure 7.7: A number of pure tones (one per scan) were coupled with the noise source,
captured by the RDBE-S/BMR and processed with DiFX. This plot shows an overplot of six
such spectral from the DiFX Swinbourne format data files.

And for completeness, in the cross-power spectrum showed up with the same structure
in all of the baselines as shown in See Figure 7.8. In this case, the injected tone was at 880
MHz, which aliases to -144 MHz in these LSB plots. (The noise source attenuator was set
to 21 dB, and the tone power was -40.3 dBm with zero BW.)
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Figure 7.8: The cross-power spectrum for one 880 MHz tone (aliases to -144 MHz) is
shown for the six baselines for the 4 threads.

7.4 Bit State Checking

One of the outstanding issues with the "Jan26" revision of the Astro8Gbps personality is
that the distribution of the bit states does not match what it is being commanded to be.
I.e. there is logic in the FPGA to ensure that 68% of the samples are in the middle two
states of the gaussian, and the remainder outside.

One possible explanation that was considered was that the input signal was not using
the full 8-bit dynamic range of the ADC. To test this, a series of samples were gathered
with the attenuation of the noise source varied from 9.5 dB to 21.0 dB (in steps of 0.5 dB)
using the front-panel switches. The results are shown in Figure 7.9.

These histograms are as reported through the raw-data capture mechanism and are as
plotted with bpplotter_rdbe.py. It will be observed from the montage that at 9.5 dB the
full dynamic range was being used, and that at 21 dB perhaps 5 of the 8 bits were being
used.

Nevertheless, the population of the middle group of states varied from 64.9% through
75.3% with no discernable correlation with the input noise power setting.

At this time, it is believed that the issue is a corruption of some (relatively small) fraction
of the data samples.
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Figure 7.9: Histograms of the input samples were captured with bpplotter_rdbe.py.
This montage is of the histograms with the input noise attenuation (front panel switches)
varied from 9.5 dB to 21.0 dB.

7.5 Single-Band Delays

As mentioned in Section 7.1 [zbt hw config], page 37 3 cables were inserted between the
4-way splitter and the IF inputs to allow unambiguous identification of the signal paths.
These cables, code-named delta, epsilon and zeta were of approximate lengths 45 cm, 76
cm and 122 cm and would be expected to produce proportionate singleband delays of a few
nanoseconds. These cables were added one at a time between runs and the delays measured
with fourfit. The sequence of delays on the six baselines is shown in the following table:

Run cables CD(ns) CE(ns) CF(ns) DE(ns) DF(ns) EF(ns)
vz74 none –0.025 +1.984 +1.971 +2.013 +1.998 –0.013
vz75 d –0.031 +4.160 +1.965 +4.225 +1.997 –2.193
vz76 e +3.632 +1.983 +1.967 –1.631 –1.669 –0.017
vz77 z –0.025 +1.990 +7.795 +2.020 +7.821 +5.798
vz78 dez +3.629 +4.228 +7.784 +0.543 +4.111 +3.530
vz82 dez +3.627 –3.581 –0.028 –7.269 –3.699 +3.529
vv11 dez +3.624 +5.203 +8.759 +1.517 +5.087 +3.527
vv12 dez +3.624 +4.229 +7.783 +0.539 +4.110 +3.526
vv13 dez +3.624 +4.229 +7.783 +0.540 +4.110 +3.526
vv14 dez +3.626 +4.225 +7.783 +0.541 +4.110 +3.527
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The autocorrelations were all 0.0 ns and are not shown. Run vz74 did not have any extra
cables. For Runs vz75 through vz77 the cables were added one-at-a-time; the delays that
changed substantially from Run vz74 are emphasized in the table. Note that even without
the cables, the baselines between IFs on different ADCs are delayed by 2 ns—this is almost
exactly 2 samples (1024 MHz sampling is 0.9766 ns/sample).

With all three cables installed, the timings are as with Run vz78, and this was the typical
case. The arrangement is shown in Figure 7.10.

Figure 7.10: Three cables of various lengths were inserted on three of the four splitter
outputs to produce different single-band delays on the various baselines.

However, the timings were occasionally different following a reset of the RDBE-S as seen
in Runs vz82 and vv11 which are consistent with -6 samples and 3 samples respectively.
These were relatively rare cases—in the majority of cases the delay following a reset was 2
ns. Reviewing the last few lines in the table we see that the results are reproduceable at
the one or two picosecond level.

The delays between "stations" can be expressed by the following equations:

time(C-D) = epsilon
time(C-E) = delta + num * tsamp
time(C-F) = zeta + num * tsamp
time(D-E) = delta - epsilon + num * tsamp
time(D-F) = zeta - epsilon + num * tsamp
time(E-F) = zeta - delta

where the shift between the ADC cards is expressed as num * tsamp where tsamp is 1/1024
MHz.

Reducing these results with equations for the delays, we find that the cables insert delays
of 2.275 ns (delta), 3.625 ns (epsilon) and 5.830 ns (zeta) respectively—fully consistent with
the speed of light in the cable (reduced from vacuum by 30% or so).

Note that the equations are over-determined. The first three equations were invariably
solved, and the remainder were checked with the results. Although the solutions for delta,
epsilon and zeta were consistent to within a few picoseconds, the "checks" were typically
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off by a few dozen picoseconds. That could be a systematic issue with how fourfit calculates
the singleband delays.

The singleband delay plots, with all cables inserted are shown in Figure 7.11. The actual
values come from the associated fourfit labelling in the fringe plots (not shown).

Figure 7.11: The singleband delay observed with fourfit for the six baselines correspond-
ing to Figure 7.8 are shown. The delays, on the order of nanoseconds, are barely visible in
these plots.

As indicated at the outset the non-zero, occasionally variable delay between the cards
following a reset is a property of the low-level characteristics of the boards and the FPGA
programming. A fix for this (detecting and adjusting) is planned.
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