
VDIF support in DiFX

Adam Deller
ASTRON

5th DiFX workshop, Haystack Observatory

Adam Deller 5th DiFX workshop, Haystack Observatory

VLBI Data Interchange Format

l  VDIF is a standard for storage of VLBI
data

l  Development began in 2008, version
1.0 agreed upon in 2009

l  See www.vlbi.org/vdif/

Adam Deller 5th DiFX workshop, Haystack Observatory

VLBI Data Interchange Format

l  Driven by unsuitability of existing
formats (Mark4, Mark5B, VLBA, PC-
EVN) for modern backends, recorders,
and correlators
l  These formats were either based upon or

inherited tape-based baggage
l  No possibility for independent subband

streams
l  Natural frame sizes poorly matched to UDP/

TCP

Adam Deller 5th DiFX workshop, Haystack Observatory

VLBI Data Interchange Format

l  VDIF allows for a number of
independent “data threads”
l  Each of these can contain one or more

subbands
l  A data thread is comprised of a series

of packets, each with a header
l  Generally, packets are sized to fit within an

ethernet frame, although this is not
required

Adam Deller 5th DiFX workshop, Haystack Observatory

VLBI Data Interchange Format

Adam Deller 5th DiFX workshop, Haystack Observatory

VLBI Data Interchange Format

Adam Deller 5th DiFX workshop, Haystack Observatory

Status of VDIF support in DiFX

l  Mark5access library (developed by
Walter Brisken to unpack VLBA, Mark4
and Mark5B format data) extended to
handle single-thread VDIF data

l  Situation very similar to existing formats
l  mark5access simply unpacks - the

responsibility for ordering the packets etc
rests with the caller, in this case mpifxcorr

datastream

mark5access

Adam Deller 5th DiFX workshop, Haystack Observatory

Challenges for VDIF in DiFX

1.  Complex-sampled data
2.  Out-of-order and/or missing packets
3.  Multiple data sources for a single

station

Adam Deller 5th DiFX workshop, Haystack Observatory

1. Complex-sampled data

l  Now supported (not all sampling
precisions, but the most common)
l  courtesy work by Chris Phillips

l  Required work in correlator depths
(unwinding many implicit assumptions
of Nyquist sampling of real data)
l  Ultimately, complex data is actually simpler

and more natural for mpifxcorr to handle
l  Probably not yet bullet-proof

Adam Deller 5th DiFX workshop, Haystack Observatory

2. Out-of-order/missing packets

l  Need a pre-buffering stage to sort
packets and pad missing data

1.  Could make this external to mpifxcorr, and
pass the result on via TCP (simple interface
from the mpifxcorr point of view)

2.  Or, could just add an extra buffer inside
the existing Datastream process inside
mpifxcorr

l  Closely related to the following
problem…

Adam Deller 5th DiFX workshop, Haystack Observatory

3. Single station, multiple sources

l  Already supported by mpifxcorr for 5
years! But…

l  Configuring this via vex2difx is not
currently possible
l  Implicit assumption of a 1-1 match of
“datastream” to “station”

l  Unwinding this is a large task
l  Worse - mpifxcorr expects independent

data sources for each datastream
l  Here, packets from different threads may be

interleaved into one stream - need to share

Adam Deller 5th DiFX workshop, Haystack Observatory

Solutions 1. The ideal

l  A 1-to-many demultiplexer
l  Read a single VDIF stream in to a buffer,

reorder it and split into N separate streams,
send each stream on to a different location

l  Solve both problems in one step
l  Could go even further; why restrict to

VDIF format inputs?
l  On-the-fly reformatting
l  Could vastly simplify the interface to

mpifxcorr, and allow frequency division
multiplexing for non-VDIF formats

Adam Deller 5th DiFX workshop, Haystack Observatory

Solutions 1. The ideal

l  A 1-to-many demultiplexer
l  Read a single VDIF stream in to a buffer,

reorder it and split into N separate streams,
send each stream on to a different location

l  Solve both problems in one step
l  Could go even further; why restrict to

VDIF format inputs?
l  On-the-fly reformatting
l  Could vastly simplify the interface to

mpifxcorr, and allow frequency division
multiplexing for non-VDIF formats

A preliminary “VDIF server” has
been begun, but virtually untested,
far from feature complete, and
totally unintegrated with vex2difx

Adam Deller 5th DiFX workshop, Haystack Observatory

Solutions 2. The distasteful

l  Solve the most common problem -
trying to correlate a station with
multiple identical VDIF threads (same #
bits, etc) against “normal” stations

l  Easiest - buffer inside Datastream, and
re-multiplex back to a single VDIF
thread
l  Oh, the aesthetic pain!
l  But; the infrastructure to deal with the

output already exists, so this has been
implemented

Adam Deller 5th DiFX workshop, Haystack Observatory

Solutions 2. The distasteful

l  Solve the most common problem -
trying to correlate a station with
multiple identical VDIF threads (same #
bits, etc) against “normal” stations

l  Easiest - buffer inside Datastream, and
re-multiplex back to a single VDIF
thread
l  Oh, the aesthetic pain!
l  But; the infrastructure to deal with the

output already exists, so this has been
implemented

multiplexedVDIF is available as a
mode in DiFX-2.0.1 onwards. It is

integrated with vex2difx. However,
it is not yet extensively tested, and

the syntax to enable it is clumsy
and long-winded.

Adam Deller 5th DiFX workshop, Haystack Observatory

Recap: VDIF status

l  Single-thread VDIF, both real-sampled
and complex-sampled data, is
supported in DiFX

l  Multiple-thread data is supported under
restrictive circumstances

l  The ideal future would include an uber-
data reorderer external to mpifxcorr,
but this is not yet on the agenda
l  But this is ultimately the best way forward

to flexible, frequency distributed correlation

