Space Debris Digital Beamformer

based on CASPER Hardware

A. Mattana’, G. Naldi*, G. Pupillo®

IRA 462/12

1) Istituto di Radio Astronomia, Bologna, INAF

o
7’
s
7
T
R -

I N N N A A A N

Space Debris Digital Beamformer
based on CASPER Hardware

Referee: Monari Jader

2 o 74 skt oy
g) g S
i iR -
el ' A
= Y el Y, / / / / / / / / / / / / / y " \
dp S = g = e = N S = N N g N R4 R N P e

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Contents

PREFACEuueeeiiiiiiiinneeetiisiissssssssesssessssssssssssssesssssssssssssssessssssssssnssssssssss 5
SYSTEM REQUIREIMIENTSuiiiiuiiiiinniiiiennieiiensieiisssieimsssieissnsiesssnsesssnsssssassssssssssssssnsssssssssssssnssssssnsssssansssssnnsssssnns 6
HARDWIAREoooiiiiinnnreiiiiisissssnsseesssnssssssssss 8
CASPER GROUPetttteet et ettt e e ettt e e e e e sttt e e e e e e s aa bt e e e e e e s e aaa b b e et e e e e e aanbeteeeeeeesaanbabeeeeeeesansneteaeeessaannraaaeas 8
IBOB AND BEE2 BOARDSeeuvttiuteiiteeniteestteesitessteeesiteessteesuseessseessseessseesasesssssesssesssseesssesssseesssesssseesssessseessesssnesns 8
CONNECTION SCHEME 1. .uvteeuteeeteessteeaseesssesasssessssassseesesassssasssasssssssssssssssasssessssssssessssessssessssessssesssesssessssessssessns 15
FIRMWAREcciiiiiiinnreetiniiisssnnntesssisssssssnsssssssssssssssssessnssssssssssssssnnssesssssssssssnssesssssss 18
120] 2 PP RPRRN 18

2] 3 P PSS TSPROPPOT 26
NETWORKING......cccoiimrriiiiiiiiiiinntettiiiiisisisseessssssssssssstesssssssssssssessssssssssssssesssssssssssssssssssssssssssssesssssssssssanssesssssss 32
CONTROL SOFTWAREccettiiiiiiiissnneeniniissssssssessssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssssssssssssasssssssssssnnnnans 34
COMMUNICATE WITH HARDWARE ...ttt eutteeuteeeteeesesesseessesassseasssasssessesesssssasssessssssssessssessssessssessssessnsesssessssessnsessns 34
PRELIMINARY OPERATIONS ...euvttetteeseeenuressesensseessesenssesssessssssnsesenssssnsessnssssnsesesssesssesssssssnsesenssesnssssnssesnsessnsesnsens 35
BOOTING UP THE SYSTEM ..utveeuteeeueeeuteeesreeseeassseesesessseensesasssesnsssanssssnsssasssssnsssesssesnsssesssssssssesssssnsssesssesssesesssesnssens 35
INITIALIZATION 1.ttt euteeeureeeeeesseesnseessseeesssessesensseessessnssesssessnssssnsesenssssnsessnssesnsesssssesnsesssssssnsesenssesnsessnssesnsssesssesnsens 39
SCHEDULING ...ttt euveesuteeesteesssesasssesssesasseessesasseensesasaeensesasseansssasssesnseseasssensesessseanssessssesnssessnsessssessnsessssessnsesnssennns 43
STORAGE 1.vteuveeeuteesuteesteesteeeseeetesssseeesbesastesasesesaeeabesessaeenseeenseeenseeeseeeseeessseansseensteensseesaseansseesabeesnseesnsaennseenns 44

RUN A SCHEDULE ...uvveeuveeetreeuteeassaeasseeesssessesanssessesasssssssesasssessssasssssnsssasssessssesssssnsssesssssssssesssssnsssesssessssessssessssens 45

REAL TIME IMONITOR .. ttttteeeeeeaittteeeeeessaitett e eeeeesaaase b et e e e e e s aanee et e e eeesaaannse e e e eeesaansbeeeeeeesannnbeeeseeesasannraneeeeeeesannses 46
VALIDATION ...cuutiuieiiiiiiiiiiisnneeeiiississssssessssssssssssssesssessssssssssssssessssssssssssnssessssssssnns 48
(D] 21218 Ko T0] KPP S UUPP R OPRTPPPPPTRE 48
SAIMPLING ..ttt euteeeuteesuteesuteesteeeabeesatesabeeabaesabee e baesabeeeseeesbeeeaseeeaseeeaseeebeeeeaeeeneeesa b e e eneeesabeesabeesabeeenbeesabeennneena 51

FAST FOURIER TRANSFORM CONSIDERATIONSceteeeeesauuuureeeeessaaauneseeeressaaannseeetesssasansseeesesssasannsenesesssasansseseeesesesnnnnes 53
SIGNAL GENERATION REPORTuvtiiutitiiieeietestte sttt esite sttt estte ettt esbtesbee e suteessteesuteessteesuseesneeesabeesaseesabeesnseesaseesnneenas 55
RESULTS ...euiieetiiiiiiiissnneeenesissssssnnsesssssssssssnssssssssssssssssssssssssssssssssessssssssssnnsssssssssssssnnssessssssssssnnnsessssssssssnnnsessssass 56
PYTHON SCRIPTS ...ccutiiiiiiiiiiiiiineeteiiiisisiisssesssssssssssssssesssessssssssssssssssssssssssssanssssssssss 62
211 oo Lo | TSP PP UPPP T OPPTPPPPPTRE 62
=10 o 1 =PTSRS PUPPUPOPPRPPINt 62

R e T S T=1 V=1 £) AN 62

oL =R e [0 BT =1 <) U 63

[o T oo Lo A 1 (Lo g T L] (el £ | USRI 65

fo o T2 oo Lol A (e T o o T=2ole 1} U 65
GDE_fPGA2 MONIEOI.CONSoraainneeeieee ettt e ettt e e e e e e ettt e e e e e e st baaaaeeassssssanaaasseasssses 65

[o 1o T2 oo [ARy (e Lo o T=2ole 1} N 65

JeloT=a oo T oA g Lol (][1o Xele)1) SRS UUURNE 66

R A S R A T

Contents

[1o T oo Lo Ko A Y (e Lo o T2 ole 1} SN 66
GDE_FDGAA MONTEO.CONS ..ottt ettt ettt et ettt et et e e eesaee e 66

[o 1o TB oo Lo L MY (e Lo o TR ole 1} SN 66

CONTROL 1.ttetitteee ettt e ettt e et e e et e s et e e s sb b e e s abe e e s e be e e e s sa e e e e sa b et e e e b b e e e s aba e e e s b et e s e mb e e e s amaeeesnbaeessabaeeseanreeesannnes 66
=0 o 1 -2 ORI PUUOPPRPRINt 66
dataconversion.py (QUthOr Marco Bartoling)...............coecueeeereeseesieeseeie ettt 68
pack_sdeb_pars_conf.py (Quthor Marco BArtolini).............cccueeecueeeesceeeesciieeesieeeesiieeessveeeessiaeaeesines 70
PACK_SACD_PAIS_ODS.PY ettt ettt et e st e st e e e st e snee s 71

oo Yo e I {e Lo 1Y <) A USRS 72
SACD_INTE.DY ettt ettt ettt s e st e et e et e st e et e et e et e et e st e eree s 76

Yol (Tede VO B oo Lo el) USSP 81
SACD_TUN.PY .ottt ettt ettt s e st e st e et e st e et e st asaneesateeeaneesteeenee s 81

oKy oo 1o M =3 ele £} SO 84
SYSEOIMS.CONS .ttt ettt ettt e et e e et e st e st e e st e s bt e s st e s st e saneesateesaneesaneesseens 84
e o B ele Y1} USSR 85

STORAGE .uveeuveeeteeeuteeesteessteeasseeasesasseessesasseassesesaesasesassaeansseanseeenseeeasseensseessseaasseessseeasseessseennseesnseesnsessseennsennns 86
READMEEXE o.vvetveeeeitesiieeeit ettt et s it s e st e st e st e st e st esasa e s ateesaseesabeesasaesataesasaesabessasaesabsassassssesnsnannss 86
FPGAL_TECOITCL_SEIVEI.PY ...ttt ettt sttt e st e et st e s s e sbeesnee s 86

[Tote e I Lo Lo I Y SN 88

IMIONITOR ..utteeuteeeteeeteeeteeauteesssaeebeeesaseessesasaeensesesaeenseeansaeeasaeansaeenseeansaeensaeessaeensaeasseeansssesaeansseasssaesseesnsesnseenn 91
READMEEXE o.vvetveeeeitesiteeete sttt et st s e sata e st e st esate e s taasasassateesaseesabeesasaesataesaseesatssaasaesabsasseesnssasnsnannss 91
FEAIEIMESPECLIT.PY .ottt ettt et ettt ettt e eaae ettt e st e et s e steeteeenseeeaeeenseenane 91

INDEX OF FIGURES......ccettiiiiiiininneetiiniiissssnseessssssssssssssessssssssssssssessnnssessssssssssnnnsesssssss 95
INDEX OF TABLES......uuutttiiiiiiiiinetetiiiiiisiiseseeessssssssssseessssssssssssssessssssssssssssssssssssssssssessssssssssssssessssssssssssnnsesssssss 97
ACRONYIMS ..ooiiieetiiiiiiiinsnneeetisiisssssssseessessssssssssssssessssssssssssnsessssssssssssnsssssssssssssns 98

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Preface

This document will describe deeply the Beamformer system starting from the
Hardware Architecture, trough the operational phases (scheduling, observing), to the data
process till to obtain the beam of the observation target which can be a well-known radio
source, useful to equalize system parameters, or as for this specific application, a space
debris.

This Beam former system takes the input signals coming from single Northern-Cross
Radio Telescope antenna receivers, aligned in East-West, and “form” a unique beam
describing the power of the observed target. Depending of the type of the observation
the processed beam can show a total power of a radio source or even a doppler shift of a
debris transiting over the field of view of the antenna whilst illuminated by a transmitter.

The beamformer system has been mainly developed for radar measurements of
space debris orbiting around Earth. In these observations different sections of the
Northern Cross array are used as the receiving part of a bistatic radar system operating in
UHF band in conjunction with a proper transmitter. Due to the particular features of the
received radio echoes, the beamformer has been optimized in order to fulfill some
specific requirements, such a narrow receiving band and a high time accuracy.

We would like to thanks Marco Schiaffino and Marco Bartolini for their useful

contributes.

>
/
s
7
7

§
{

o

System Requirements

System Requirements

Northern Cross antenna has been used as receiving part of a bistatic radar for Space
Debris detection. This radar configuration (Fig. 1) uses transmitting and receiving
antennas at different locations allowing the transmission of CW signals. The antenna
beams are kept in a fixed direction with respect to the Earth (beam-park technique) so
that, when an object passes through the common volume at the beams intersection, it
produces a radio echo.

In CW unmodulated trasmissions, the echoes are expected to be quasi-monochromatic
and, consequently, signal post-processing is mainly performed in the frequency domain.

Space debris

Fig. 1: Bistatic radar configuration geometry.

The most part of our potential radar targets are in low Earth orbit (LEO), i.e. below an
altitude of about 2000 km from the Earth surface. This is the most polluted orbital region
in which radars are very sensitive and outperform all other types of sensors (optical
telescopes, etc.).

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

The Northern Cross space debris bistatic radar observations are carried out in beam-
park mode, without tracking the target. Due to the high angular speed of the objects in
LEO, the typical duration of a space debris echo is of the order of the second.

In a bistatic configuration the frequency Doppler shift, Af, of the received signal is
given by:

1,.)
Af = —(Rrx+Rey) [H]
where

A = transmitted wavelength [m]
RTx = target radial velocity respect to the transmitter [m/s]
RRX = target radial velocity respect to the receiver [m/s]

Considering a maximum speed for a debris in LEO of 7.8x 103 m/s (assuming a
circular orbit) and a signal wavelength of 0.735 m, the bistatic Doppler shift doesn’t
exceed +22 KHz in frequency.

The beamformer receiving band of 100 KHz is optimized for space debris observations
because it permits to detect any possible radar echo coming from a LEO target and, at the
same time, prevents the storage of large amounts of data acquired in the time domain.

B A A A A A A A A A A A A A AN

e

7

Hardware
CASPER group

Hardware

CASPER group

The term CASPER means “Collaboration for Astronomy Signal Processing and
Electronics Research”. The CASPER was born at the Berkeley University of California, with
a collaborations of several institute and laboratories. The primary goal of CASPER is to
streamline and simplify the design flow of radio astronomy instrumentation by promoting
design reuse through the development of platform-independent, open-source hardware
and software.

The CASPER group aim is to couple the real-time streaming performance of
application-specific hardware with the design simplicity of general-purpose software. By
providing parameterized, platform independent gateware libraries that run on
reconfigurable, modular hardware building blocks, they abstract away low-level
implementation details and allow astronomers to rapidly design and deploy new
instruments.

IBOB and BEE2 boards

The Casper researcher group has been develop more than one powerful board based
on Xilinx FPGAs, the boards used for this specific application are the IBOB and the BEE2.
Every CASPER boards are sold without firmware but with a lot of primitives which allow to
develop your own application.

The IBOB (Interconnect Break Out Board) is the very first product of the CASPER, it
has been developed on the 2005, that means, the libraries we are using today to
implement acquisition system over this hardware have been carefully checked and tested
from many engineers working in the astronomical world since seven years.

IBOB board main features are:

o a Xilinx Virtex-1Il Pro FPGA programmable via a JTAG port (setting specific
jumpers, it can load the firmware at the switch on from an on-board EEPROM);

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

2x CX4 10Gbps serial connectors;

1x RJ45 Ethernet interface;

1x RS232 interface

2x ZDOK connector where plug lots of custom A/D board up to 1GSample
1x MDR 40 differential pair connector;

80x GPIO headers with selectable |0 voltage;

2x SMA 10;

2x 512k x 36-bit SRAMs

O O O O O O O O

The Board can be schematically represented with the block diagram of Fig. 2.

2x diff. clock 2x diff. clock

40 pair diff. /0 40 pair diff. 1/0 40 pair diff. 10
(ZDOK) (ZDOK) (MDR)

F A A

RS8232 ‘—‘_, <—,—> 80x GPIO
Xilinx Virtex 11 Pro 10 Ghps I/0

10/100 Ethernet [« »] »

2VP50 FPGA (Cx4)
Diff. Clock /0

10 Gbps 1/0

(SMA) 0 7 f (CX4)

Y
-~

Configuration 36x512k 36x512k
PROM SRAM SRAM

Fig. 2: Block diagram of the Ibob board general architecture

Every CASPER boards have the same kind of connector for the A/D board in order to
re-use AD boards even with the next CASPER hardware generation.

Hardware
IBOB and BEE2 boards

Fig. 3: The IBOB board, you can see on the top the 2 ZDOKs for A/D boards, two CX4 connectors below, JTAG pins
on the left, while the Xilinx Virtex 2 Pro is behind the cooler

IBOB can mount 2 A/D board, we are using the custom “iADC”, which takes in input:

o 8 bit Dual 1Gsps;
o Aref Clock: 10MHz-1GHz, 50Q, 0dBm;
o A pulse per second reference (PPS);

Fig. 4: CASPER iADC

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Therefore the IBOB can acquire signals coming from 4 antenna receivers (Northern
Cross Radio telescope has antennas only with one polarization). Data collected and
processed can be sent via the 10 Gbit Ethernet link to a workstation (via UDP protocol) or
even to another CASPER board (via XAUI that is a easier point to point protocol) for
additional processing.

The BEE2 is a module, which is a single printed circuit board containing five FPGAs
arranged within a very high-speed inter-chip and inter-board communication structure.
Additional peripherals are present to enhance usability and permit a fully functional free-
standing computing system. Each FPGA has direct access to four DDR2 memory modules
for program and intermediate result storage.

-
=
< H
* 4% 3l L i 2F
48 =y 3 _
' < & : ?r “?v‘;wu.-. mum.P 2
L i .' '.
¥ ' h N - e
e : 8- [T R
b
‘—;: g R G
= it
DCD 2 8 . e
& DBHM unm\.w il
¢ :
3 =
p=]
% 2

o R e
CRE ey

4
i

L - W P — DA

RS232
Fig. 5: A picture of the BEE2 board whose principal components are pointed out.

Hardware
IBOB and BEE2 boards

o 5 Xilinx Virtex-1l Pro 70 FPGAs, Speed Grade 6

o Upto40 GB DDR2 SDRAM

o SystemACE controller and Type Il CompactFlashTM for configuration and data
storage

o USB port

o DVl port

o SelectMAP configuration from control FPGA

o 10/100 Ethernet PHY

o RS-232 serial port (control FPGA)

o Status LEDs

o Serial ATA ports

o 18 AUl links (8 or 10 Gbps)

o Voltage and temperature monitoring

o Real Time Clock

o On-board power supplies

o Panel display

o Internal or external system clock and user programmable clock

The basic compute elements on the module are five Xilinx Virtex 2 Pro 70K FPGAs.
The center FPGA, termed the control FPGA, has primary responsibility for system
management. Each of the remaining four user FPGAs are tasked with computional
workloads and can communicate with the control FPGA at a rate of 2.5GB/s. The user
FPGAs can also inter-communicate at a speed of 5GB/s via a ring configuration. These
Intra-module links are implemented using parallel buses utilizing general purpose 1/0
signals of the Xilinx FPGA’s high-speed serial links.

The selected product family has an additional 20 high speed serial RocketlO blocks
implemented directly on chip which can be used of up to 3.125Gb/s, and in this instance,
specificed to meet the IB4X description common to both by the Infiniband and the 10Gb-
Ethernet-CX4 standards. It groups four 2.5Gb/s (Infiniband) or 3.125Gb/s (10Gb-CX4)
differential pairs in a single unit to reach an effective maximum bit-rate of either 8Gb/s or
10Gb/s per port.

BN A7

L

P S 888888 8ESE S

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

4—-(Status LEDs ‘
DC/DC Converters
| 123 > 4—.‘ RS-232 Serial ‘

2.8Y
3.3V

5.0V | 4—»(101100 Ethernet ‘
Control and
4—-| JTAG Debug |<—- o oA 4——(DDR2 DIMMs (20) ‘

System Clock
(100MHz) <—>< AUI Links (18) ‘

h 4

User Clock

(0.03-200MHz) ._.(USE Port ‘
| Parallel 4 |
4—.(DV Port ‘
| SystemACE CF
4—#‘ YoltTemp M onitor ‘
‘ RT Clock f—-

¥

Fig. 6: Block diagram of the BEE2 board general architecture

Each user FPGA has four IB4X ports, whereas the control FPGA has only two. Each
individual port requires four RocketlOs, which leaves four transceivers unused on the user
FPGAs, and twelve on the control FPGA. Up to four DDR2 DIMMs can be attached to each
FPGA. Individual 72-bit wide DRAM modules can be accessed at speeds of up to
400Mb/s/wire, corresponding to an aggregate throughput of 3.4GB/s per DIMM.

A brief schematic representation of the data flow can be the follow:

/ MONITOR
SWITCH \

STORAGE

IF » ADC IBOB > BEE2

Y

h

Fig. 7: Data Flow scheme

Signals coming from 4 receivers (that have to be calibrated in phase and equalized in
amplitude before) will be digitalized and acquired from the IBOB that apply a first stage of
filtering and processing. Then a second stage of filtering will applied on the BEE2 which
makes the beam by summing the time domain data and sends the result to workstations
for the analysis.

Hardware
IBOB and BEE2 boards

The time accuracy is demanded to the IBOB firmware which synthetized an internal
clock synchronized “indirectly” via a NTP server placed on the Medicina Dish Control
Room where time accuracy is guaranteed by a Hydrogen Maser Atomic Clock. A 10 MHz
Sinewave locked to the Maser is distributed to every backends. The iADC sampler is
locked to this 10Mhz, and the control software during the system initialization perform a
time update with the IBOB internal clock (see chapter “Firmware/IBOB”).

Communication between the BEE2 and workstations for control, monitor and storage
must be supported by a 10Gbit Ethernet Switch with CX4 ports. We have used the Fujitsu
XG700 12 Ports Layer 2 Switch which provides a throughput 240Gbit/s.

Fig. 8: Fujitsu XG700 12CX4 Ports 10Gb Switch

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Connection Scheme

The Beamformer Digital Backend has been realized in the Medicina “Receiver Room”.
It is placed in the South-East room corner where three 19” inch racks hosts most of the
devices used for this project. The overall project scheme is as follow:

ANTENNA
» ANALOGUE IN
FRONTEND)
MIXER
378MHZLO
/ / CONTROL
MASER s PPS DIST s BEAMF > SWITCH \
STORAGE
10 MHz REF |—»| 120 MHz CLK » CLOCKDIST

Fig. 9: Overall scheme

Synchronization and is guaranteed by the distribution of a 10MHz synewave derived
by the hydrogen maser atomic clock that stabilizes the local oscillator used by a mixer that
converts the RF input signals to 30MHz Ifs. The Beamformer sends the generated time
domain beam to workstations trough the 10GbE switch.

Beamformer
IN-O0 ——= @ CX4 CX4 CX4 | Cx4
:F;Hél :3 = AD-0 0 <::’\‘/ 0 2 <:— :l;
-1 —5S o
IBOB BEE2 FPGA o
II\|:I’|—§2 —_— Eg [
:% AD':I- CX4 CX4 Cx4a [A—— CX4
IN-3 —3 Eg 1 1 3 \1—::> #
__ 5 10 GbE
| Switch
Control and [cxa cxa
Monitor L* t
‘ CX4
| #
[
C¥d | A——— K| CX4
Storage |, ¢ I
|

Fig. 10: Basic connection scheme

Hardware
Connection Scheme

Each IBOB is able to manage 4 IF, that for the Medicina’s Northern Cross
Radiotelescope means 4 antenna receivers (Northern Crosso does not have the dual
polarization). After the first stage of filters the data reachs the BEE2 via the 10GbE link
(CX4 port 0) and the synthetized beam will leave the beamformer on the BEE2 CX4 port 3
with UPD packet destinated to the storage machine. A copy of the same data will reach
the “control and monitor” machine (always trough the switch) using the CX4 port 2.

4 Beamformer

i Cx4 Cx4 Cx4 Cx4 i
i s [12[7]] 2 3
o T Bee2 | BEE2 [“ 5
| | 1BOB3| 3° K PR FPGAZ2 | FPGA3 cxa | |BOB4| |
bl |

i |

| |18OB2| %' 9| BEE2 BEE2 |5 K %' | 1BOB7 |
] T FPGA1l | FPGA4 o N
i —]|-: C¥4 | | C¥4 | | | Cx4| | Cxa :::-_ i
1 2 3 2 3 :

7 H N

CX4 CX4 CX4 Cx4 Cx4 CX4 Cx4 CX4 Cx4 Cx4 CX4 Cxa

g# | | & | | &# [& | & | & | & |&#]| & |&] &/ | #
10 GbE Switch

Fig. 11: 4 Parallel Beamformer System Connection Scheme
(control and storage must be connected as in the previous scheme)

One beamformer uses just one BEE2 FPGA, it is possible to run till four beamformer
at the same time using 4 IBOB and just one BEE2 having redundancy. The number of the
connections increase, but it is not mandatory to have the real time monitor, so you can
disclaim to connect the BEE2 FPGA CX4 port 2 where you believe is not necessary.

We found very useful in our tests to make observations using different configuration
of the input signals at the same time, because if an antenna receivers has trouble, due for
example to weather conditions during observation, the redundant system has most likely
given however good results.

e . e I S

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Fig. 12: Picture of the Local Oscillator set to 378 MHz in input to
the MIXER to generate a IF of 30MHz

Fig. 13: Picture of the main Beamformer Digital Backend modules

The above picture shows the Beamformer, you can recognize from the top:

a.

The Fujitsu XG700 12CX4 Ports 10Gb Switch.

b. The BEE2 front side with the CX4 of the FPGA 1 and 4.

The Clock distributor, front side is a -19db input clock, on the rear there are 32
splitted output.

The PPS distributor (in/out on the rear).

8 IBOB boards, input signals are in the rear side while in the front there are the
CX4 port.

Firmware
IBOB

Firmware

IBOB

IBOB firmware has been written by using the Xilinx standard library combined with
CASPER IBOB customized libraries (highlighted in yellow) which help to address board
resources on your synthetized project. The below picture is the Matlab Simulink model file
that the system generator will use to generate the HDL code. Going into details the
firmware can be explained in the next schemes.

E!i_heamf_sdeh = =1Ol x|

File Edit ‘iew Simulation Format Tools Help

Ready 22% [[[variableStepDiscrete v

Fig. 14: Matlab Simulink Screenshot of the IBOB project

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

\ 4

\

\4

Cll
— FIR
DDC |—» > .
interface <:)_> filter Quantizer lfs

\4

XAUI
interface

Packetizer

A

v
A

\4

C, l
ADC FIR
DDC |—» . .
interface ®_' filter Quantizer lfs

Fig. 15: IBOB firmware architecture

The four IF real analog signals are digitized by the ADC cards with 8 bits precision and
a sampling rate of 120 MSample/sec. Then they are converted to a base-banded complex
signals centered at zero frequency by a DDC block (Fig. 16).

low-pass filter down sample

data in N (: :) —l_— lfs | data out
A :

| - lfs Q dataout
N\ VA

cos sin

Quadrature DDS

Fig. 16: DDC schematic

The DDS generates a complex sinusoid (e/2™ = cos(2nf) + j sin(2rf)) at the
intermediate frequency. Multiplication of the intermediate frequency with the input
signal creates images centered at the sum and difference frequency (which follows from
the frequency shifting properties of the Fourier transform). Properly designed lowpass
filters (in relation to the IF bandwidth), placed after this multiplication, pass the difference
(i.e. baseband) frequency while rejecting the sum frequency image, resulting in a complex
baseband representation mathematically equivalent to the original signal. Thanks to this
property, the complex baseband signal can be appropriately down-sampled without losing
any information.

http://en.wikipedia.org/wiki/Baseband
http://en.wikipedia.org/wiki/Negative_frequency#Complex_sinusoids

Firmware
IBOB

In the case of the project the IF frequency is 30 MHz, the IF analog bandwidth is
variable and it can be 2.7 MHz, 5 MHz or 16 MHz according to the receiver system
connected to the ADC. During Space Debris observational campaigns the most used
bandwidth is the first: 2.7 MHz.

The lowpass filter of the DDC has been designed using the Filter Design and Analysis
Tool of MATLAB. The main characteristic parameters of the FIR filter are shown in the
picture below.

) Filter Design & Analysis Tool - [C:\work'.giovannitddc_fir.fda] o] 4
File Edit Analysis Targets View ‘Window Help

PeEal »2ox |0 HEEE:+0 BLOEH| W

__ Magnitude Response (dE)

— Current Fitter Information

0
-20
Structure: Direct-Form FIR —
Circler: 15 Dé -40
Stable: Yes =
. S B0
Source: Desighed =
cn
L R
= i
-100
-120
Store Fitter ... |] 01 0z 03 04 0s 06 oy 0.8 09
Fitter Manager .. I Mormalized Freguency (=7 radizample)
— Response Type — FiterOrder— Freguency Specifications — Magnitude Specifications
& |Lowpass] || & spesity order iz Units: INormalized wWta 1) =]
=
= i |Highpass - l -
" Minimum arder Fe FSDDD The attenustion st cutaff
— " Bandpass
i || o
" Bandstop Optians s 1 frequencies iz fixed at 6 dB
% = —_— : E
" [Differertiatar - M =T Pl thalf the passhand gain)
@I | Design Method Window: [kaiser =]
o IR IBuﬂerworth - l Furction fame: I
[Eeta: E
= FIR =
@ Q Iv\ﬂndow l - I
E Design Fiter I

|Ready

Fig. 17: design parameters of the FIR filter inside the DDC block.

The normalized cutoff frequency (wc) of the FIR filter is 0.1 of the real processed
bandwidth which is 60 MHz (since the ADC sampling rate is 120 MSample/sec). So the
filter cuts at 6 MHz.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

The DDC block synthesized in the FPGA is optimized (in terms of resource usage) to
have a down sample factor of 4. Nevertheless with this filter it would be allowed a down
sample factor even higher (up to 10); however oversampling the signals prevents from
any undesired effects of aliasing.

In general when mathematical operations (e.g. addition or multiplication) are applied
to signals their binary representation grows in terms of number of bits. Obviously the
greater the number of bits, the higher the percentage of hardware resources occupation
in FPGA. This is the case of the DDC in which there are several multiplications and one
addition. For this reason a re-quantization of data is accomplished just after the
decimation stage: in particular we pass from 39 bits to 8 bits binary representation of
signals (8 bits for real part and 8 bits for imaginary part), of course allowing a certain but
tolerable loss of precision.

After being down converted by the DDC, the signals are multiplied by 16 bits complex
coefficients with unitary amplitudes in order to equalize the phases of all the signal
chains. These coefficients are calculated using an astronomical calibration procedure that
will be the subject of a future technical report.

— Current Filter Infarmation — Magnituce Response (cdB)
0 T T
Structure: Direct-Form FIR —_ L R R b R b bR e LR e EERERREEE S
Crer: ol %
- Li}
Sttt YES_ 1=l]| ST RREPLIS FR T ST e P A AR N e A A O
Source: Designed =
=]
£
T e e A
e I I I I I I I I I
Store Filter ... | u] 04 0z 0.3 0.4 0.5 0.6 o7 08 o4
e r— | Mormalized Frequency (xx rad/sample)
__ResponseType _ FiterOvder Freguency Specifications — Magnitude Specifications
& |Lowpass - [& Specify order: b_q Units: INormaIized 0to1) = l
B
1 o Highpass - l
™ Wit orcder I [z} The sttenuation st cutaft
m—fm i Bandpess
" Bandstop Options we: o7 frequencies is fixed &t 6 dB
% — —_— . ﬁ
O [pitferentiator = I™ Scals Passhand thalf the passband gain)
@ | Designtethod || window: IHamming - I
=l COIR IBuﬁerworth - I I
K z
= FR | -] I
@ . oy - I
E Design Fiter |

Fig. 18: Design parameters of the FIR filter synthesized in the IBOB.

]

e oo

L

A A A N A A A A A A Ay .-

I t?..u\.kﬁ =

Firmware
IBOB

Given the requirement to have at the output of the system raw data with about 100
KHz of complex bandwidth, another lowpass FIR filter is applied to data stream. This filter
has been splitted in 2 stages: one synthesized in the IBOB and the other in the BEE2
board. Unfortunately it is not possible to realize a unique FIR filter stage because of the
limited number of available resources in the IBOB.

A good trade-off between size (n. of taps) and performance of the filter has been
found with the design parameters shown in Fig. 18.

With 30 MSample/sec of sampling rate and 0.07 of filter wc, it follows that the filter
cuts at 1.05 MHz (15 MHz * 0.07). The data can be decimated setting a down sample
factor of 13 still remaining in the Nyquist sampling zone. In fact 13 is a proper integer
divisor of the sampling rate to have at least twice the cutoff frequency of the filter.

30 MSample/sec
13

= 2.307692 MSample/sec > 2 * 1.05 MHz

The problem of data dimension recurs again because at this point signals are
represented by 32 bits words (32 bits for real part and 32 bits for imaginary part). For the
same reason mentioned before both real part and imaginary part of signals are re-
guantized with 8 bits precision.

Then the resulting 16 bits complex signals of the 4 parallel chains are packetized
together at the same time into 64 bits words and sent over XAUI interface. The 64 bits
word is structured as schematically represented in the following table.

Position of bits from the most to the least significant
64 1
Re #1 Im #1 Re #2 Im #2 Re #3 Im #3 Re #4 Im #4

Tab. 1: Structure of the 64 bits word transmitted over XAUI.

Data transfer using XAUI consists of a point-to-point regular stream of 64 bits words without
overhead on CX4 connectors. So there is a direct link between lbob and BEE2 CX4 ports.

Time accuracy is the main constraint in this kind of projects, an internal clock has
been synthetized into the IBOB in order to send data to the BEE2 at a specific time
window. The internal clock is locked to the Medicina station Maser Hydrogen Atomic
Clock by using the PPS (Pulse Per Second) and the 10MHz reference input.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

During an initialization phase the workstation that is synchronize via NTP to the
Maser Clock perform a “time update” operation that consists on:

1. Wait for a “new” second (t;), that means HH:MM:SS.0000000

2. Send the UT Timestamp to the IBOB which will certainly arrives in less than one
second

3. Wait for the next new second (t;) (in the meantime a PPS has incremented the
IBOB clock)

4. Ask for the IBOB local time

5. If the Received Timestamp is equal to the workstation local time, Success.

RRS

Send ty ty timestamp to IBOB

Ask time t, timestamp to PC

Fig. 19: Time diagram of the time update procedure

We assume that the time on the workstation is very accurate, anyway latency time to
send timestamp to the IBOB (which means from PC to BEE2 over a private 10/100 Mbit
Ethernet network and from BEE2 to IBOB over XAUI point to point 10Gbit link) will be very
shortly and always less than 1 second. However just after a second there is a cross check
asking again the time of the IBOB and it is expected to be equal. In worst case, if the
previous latency time was greater than 1sec the new pps has not increased it and there is
a time mismatch message reported.

Now the IBOB is up to date, it knows what time is it and what day is today. Even if not
needed a counter increasing with the IBOB clock (30 MHz) provides fraction of seconds.
When performing a measurement just upload to dedicated IBOB registers timestamps of
the start time and end time, and, if the system has been armed data will be generated.

Firmware
IBOB

[timefract]

| [timeup_rec] P load Nocalelodk] vst
out Jreg_out sim_out =] i
| MRST] st o . timefrastion fimefract
localtime
Ipps] P20
internalaloce g
- _out im_out out
en
et ant \ast_timup_set p—
4
MRS T] stz o |reg_out sim_out 00000
en
[start_rec] start_time
R)
MRST] stz Birgon simou pulse_edendel e
an
[stop_re stop_time
R
4
MRS T] stz ol
an az=h w| and
o
' 2F]
achl) -
»t

negative_edge

arm

Fig. 20: IBOB Timing registers

An internal clock is necessary but is not enough for time accuracy. IBOB must
guarantee that the first sample leaving the IBOB is really the first sample acquired from
the A/D and then processed into the DDC and the FIR block set. A sync signal activated at
the start time has been propagate on the entire chain taking into account each block
latency and it indicates to the data packetizer when start.

Gateway Dutt

Gatewsy Outz ~ Sooped

»Jdint re | " xn 32 tapyn cast 21 |—
| dout |— o] OutRe
> im i Bt
Comver3
»lding FIR1 5
o [s to_ri | 000 r
>
. e Eromi - Qutlm xn 32 tapn b .
i - [cai
! oe _.E hase_otaters Convert!
B it From11 phase_fotate FIR2 onve Delay!
—plsimi .
A iz
[
@ W {din1 e . S
’ | dout |— el Dutfe [—lxn 32 tapn cast b, | |-
q > m »s
—pefsim_q q2 P {ding Convertd ——
" FIR3
o . o to_ri1 F[m .]12 or ot Detay
: Tom
outarangeitt - [s0r_i0] | i Ci n 32 tapyn cast .
outotrangsit Jeor_il phass_rotator!
) From13 o2 Bromte]
—p]sim_syne
outorangeq [——
synen [ot Ippel 1
synot Inverter! posedgel Getel2 -)
oy - out gpio_out sim_out b
— | sim_data_valid synea 4_[001_@ pulse_esxtender2 ppe_led
data_valid N - -
3000
apio_out sim_out
ptated]
sori_led . [sott_resat
Tfinish]

A N N N N A AN A A A ARy

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

There is also a constraint for the down sampler, this decimator must be initialized to
the decimation value in order to enable the first sample as shown on the next picture:
time between the start and the first sync is the latency due to the DDC - Phase Rotator -
FIR block set, the very first sample will pass and the next sync will be down sampled.

Fig. 22: Simulation of the IBOB decimator performed using Simulink.

Firmware
BEE2

BEE2

The BEE2 FPGA uses an internal oscillator as a 205MHz clock, the firmware can be splitted
in 2 main parts, one dedicated to the data processing and the other one to route commands

between the workstation and the IBOB.

mb_heamf_sdeb H

File Edit Wiew Simulation Format Tools Help

=10 x|

DEE&| 2Ry sfn [tm - DB EBE T ®

] BE

e e e

XAULINBUT Moin 180 - porto
ICGIE T S{2CTa P IEUEW SOl - (It

4| | i
Ready |27 [|odes 4
Fig. 23: BEE2 MATLAB Model file

The following scheme represents the architecture of the firmware.
.| FIR .
Tl filter | T U l

XAUI N ,C . . 10 GbE

—> t »| Packetizer |—»
interface Unpacketizer| "y = > Quantizer interface

.| FIR o T
T filter [lfs

Fig. 24: BEE2 firmware architecture

p
/
A f‘

L A E A S S SSSSaS S S Y

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Data received from XAUI interface are splitted in 4 parallel lines adopting the same
criterion used in the transmission side. So at the output of the unpacketizer block we have
complex signals with 16 bits precision to which we apply lowpass FIR filters. The target
complex bandwidth of about 100 KHz is achieved thanks to a FIR filter with a Hamming
window, 110 taps and a normalized cutoff frequency of 0.04 as shown in the next figure.

.} Filter Design & Analysis Tool - [C:work'giovanniibee_Ffir.fda] = |EI|1|
File Edit #Analysis Targets Wiew ‘Window Help
DEEHSR|[AL LK T HINNE~ + 0 Bk N
— Current Fitter Information — Magnitude Responze (dB)
50 T T T T T T T T T
Structure: Direct-Form FIR —_ o
Order: 109 g
Stahle: Yes &
. S 50
Source: Desighed =
{=]
=
-100
-150
Store Fiter ... I o 01 0.2 0.3 0.4 0.5 06 o7 0.5 (=)
Fiter Manager .. I Mormalized Frequency (<7 radizample)
— Responze Type _FitterOrder ___ Frequency Specifications — Magnitude Specifications
& Lowpaszs vl ¥ Specify order: Fgg Unit=: INormaIized (0to1) vl
=
g |Highpass vl
~ " WinirLrn croet I & The attenuation &t cutoff
Bandpass -
— ¢ Bandstop Options we: r frequencies is fixed st 6 dB
N = _ . L
o IDifferentiator = l I Scale Passhand (half the passhand gain)
"' | Design Method Window: IHamming 'l
S R IBuﬂerworth vl I
[|5—
@ = FIR Iv\.ﬂndow vl ry— |
E Design Filter |

|Ready

Fig. 25: Design parameters of the FIR filter synthesized in the bee2.

Since the sample rate is about 2.307692 MSample/sec, it follows that the filter cuts at
46.153846 KHz (1.153846 MHz * 0.04). In this way we obtain a total complex bandwidth
of 92.3076923 MHz and 23 results to be a suitable sample factor that can be used in order
to respect the Nyquist-Shannon sampling theorem.

2.307692 MSample/sec

- = 100.334448 KSample/sec > 2 * 46.153846 KHz.

N A A N N A NN .

Firmware
BEE2

Finally the 4 parallel data stream, that correspond to the signals coming from the 4
antennas of the array, are summed up together in phase forming the antenna array beam.
Again, after FIR filtering and summing operations, the resulting complex signal is now
represented by a greater number of bits, in particular 38 (19 for real part + 19 for
imaginary part). So, before making packets and sending them through 10 Gbit Ethernet
link, data are re-quantized in order to have the signal with 32 bit precision (16 for real part
+ 16 for imaginary part).

The packetizer block produces time domain complex data in UDP packets of 1280
bytes over the 10 Gbit link. The format of the packet is very simple as follow:

Field Offset (byte) Length (byte)
Counter 0 8
Data 8 1272

Tab. 2: UDP packet format

Counter: The Counter field is simply a unsigned 64 bit integer counter of the packet, it
starts from zero and it is useful for the storage script to understand if there are lost
packets. Unfortunately, using UDP protocol in case of data loss the packet lost will be not
transmitted again. This field will be not stored in the output file.

Data: The Data field contains complex pairs of 32bit (Real part highest 16 bit and
Imaginary part the lowest 16 bit) and their representation is a signed fixed point 16.11 (or
16.12, it depends on the configuration chosen during the initialization). The MSB of 16’s
represent the sign. When negative the number has to be handled with 2’s complement.

Cslifililifdldldldld[d[d[d][d][d]d]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The weight of each bit is as follow (generic form):

n
Z 2bit s bit value

bit=0

where the bit value can assume only values 0 or 1. Using a numbering system
centered to the binary point position (Fix 16.11) as follow:

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Therefore, for the specific case Fix 16.11 is:

3

2P s bit_ value
bit=—11

If the bit value number 15 is 1 the 2’s complement is obtained by inverting the value
of every bits and then adding 1. The same result can be easily obtained by subtracting the
minimum number representable (in case of a signed fixed point 16.11 is -8) to the
absolute value of the number (as it is a unsigned fixed point 16.11).

The possibility to convert this data in real time from fixed point to real value is under
investigation. There is a package called fixreal developed by Marco Bartolini that converts
fixed point data to floating point and vice versa but we should study before the feasibility
because it takes lot of CPU/DISK time making this operation in real time while acquiring
and storing data to the disk and we do not want to risk to lose data.

The order of the samples in the data field is simply as follow:

Data Field Offset (byte) Length (byte)
ToIm 0 2
Tg Re 2 2
T1Im 4 2
T, Re 6 2
T317Im 1268 2
T317 Re 1270 2

Tab. 3: Data field in UDP packets

Where the T index means time relative just to this packet. There is no time marker on
packet header, it is important to refer to the output file name to associate each sampling
time to a sample.

A hardware communication protocol has been developed on the BEE2 and IBOB
firmwares to allow to exchange data, set-points, commands, acknowledges and messages.
A data field called oob (“out of band”) will contain different values depending on the
meaning of the transmitted message. The OOB field is an extra 8 bit line (physically really
extra 8 wires) available over XAUI chip to chip protocol. Those 8 extra bit do not use the
64 bit bandwidth of the data field.

Firmware
BEE2

00B BEE2 -> IBOB IBOB -> BEE2
0 MRST - Send Master RESET DATA - Science Data
1 WR - Write Register WR ACK - Write Acknowledge
2 ARM - Arm IBOB ARM ACK - Arm Acknowledge
3 TUP - Send Time Update TUP ACK - TUp Acknowledge
4 TR - Ask for IBOB local time TRA - Send Time Read
5 START - Set START Time STACK - Start Time set
6 STOP - Set STOP Time STOCK - Stop Time set
7 SW - Ask for SW version SWVER - IBOB Software Version
8 Not Used STARTED - Start Obs Signal
9 Not Used FINISHED - End of Obs Signal

Tab. 4: OOB list for IBOB-BEE2 internal communication protocol.

When a command is sent to the IBOB via the BEE2 you can find the acknowledge few
clock cycles later on the BEE2 registers, this is very useful to understand if the command
sent to the IBOB has been receveid and applied.

Eg 1: Arming the System.

1. Workstation sends the command to ARM the IBOB at t,

BEE2 sends to IBOB: OOB=2, DATA=1 at t;

3. IBOB receives O0OB=2, DATA=1, updates the ARM register value to 1 and sends an
acknowledge to the BEE2 at t, sending OOB=2, DATA=1

4. BEE2 receives the ack and updates its own registers “last_rx_oob” and
“last_rx_data”.

5. Workstation can wait polling those registers to know if the command has been
received correctly from the IBOB, and at t5 can start to send the next commands.

N

The workstation does not have to wait for a specific time between commands but can
wait polling the BEE2 registers to know when the IBOB is ready to accept the next
command. This protocol is not only used for communication between the wokstation and
the system but also to exchange information between IBOB and BEE2 implementing a
unique state machine as you can see on the next two examples.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Eg 2: Starting an observation

Starting condition: Start time and Stop Time is set, System is Armed (Arm led on IBOB
switched on).

1. At tgthe local timestamp is equal to the start time, a STARTED signal is sent to the
BEE2 from the IBOB using OOB=8, DATA=0 (in case of a signal the data field does
not make sense)

2. BEE2 send a “soft reset” to the system which prepares the packetizer (reset a
counter) and the 10 Gbit buffer (empting the buffer) to start.

You will see the running led starting to blink.
Eg 3: Ending an observation

Starting condition: Start time and Stop Time is set, System is Armed (Arm led on IBOB
switched on).

1. At to the local timestamp is equal to the stop time, a FINISHED signal is sent to the
BEE2 from the IBOB using OOB=9, DATA=0 (in case of a signal the data field does
not make sense)

2. BEE2 answers to the IBOB disarming the system sending a O0OB=2, DATA=0.

In this case you will see the running led stopping blinking and the arm led switching off.

If at the end of an observation you will see the running led switched of and the arm led
switched on there is a failure condition due to possible causes such:

o BEE2 has unexpectedly stopped to work, the storage should reports an error on
the amount of data dumped that differ than expected.
o The XAUI physical link connecting the IBOB and BEE2 has been disconnected.

e . e I S

Networking

Networking

Using the UDP protocol each BEE2 FPGA Ethernet device must have a proper network
configuration in order to avoid conflicts between devices of the same network.

We have identified a possible scheme on assigning IPs and MACs that unless than a
common part each address differs by only two ID digits as follow:

MAC 00:12:6D:AE:0B:XY
IP 192.168.11.XY
GATEWAY 192.168.11.10
PORT 6X00Y

Tab. 5: 10Gb Eth interface configurations

Where

X =FPGA ID, can assume value from 1 to 4
Y = SERVICE ID, can assume value from 1to 5

The PORT scheme is valid also for the Ethernet communication over the interface
10/100Mbit between the Control PC and the FPGA hardware registers. Here shown in the
next table the Service ID list:

INITIALIZATION 6X001
CALIBRATION'" 6X002
MONITOR 6X003
STORAGE 6X004
RECORDER" 6X005

Tab. 6: Service ID List

(*) For the Calibration service see the “Space Debris Calibration” internal report.
(**) Used only between the Control and Storage machines.

R TNy

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

While the INITIALIZATION and CALIBRATION services use the private 100Mb network
(192.168.10.X) the MONITOR and STORAGE packets travel on the 10GbE Network and the

RECORDER commands over the public network.

BEEZ FPGAL BEEZ FPGA3 STORAGE
10 GbE maonitor 10 GbE monitor 10 GhE Ethl
MAC 00:12:60:AE:0B:13 MAC 00:12:6D:AE:0B:33 MAC 00:60:DD:45:FB:D7
IP 192.168.11.13 IP 192.168.11.33 P 192.168.11.11

10 GbE storage

10 GhE storage

10,/100 Mbit EthO

MAC 00:12:60D:AE:0B:14 MAC 00:12:6D:AE:0B:34 MAC 00:19:99:1C:AE:2E
IP 192.168.11.14 P 192.168.11.34 P 192.167.189.66
BEEZ2 FPGAZ BEEZ FPGA4 CONTROL and MONITOR
10 GbE maonitor 10 GbE monitor 10 GhE Eth2
MAC 00:12:60:AE:0B:23 MAC 00:12:6D:AE:0B:43 MAC 00:60:DD:47:25:02
IP 192.168.11.23 IP 192.168.11.43 IP 192.168.11.10

10 GhE storage

10 GhE storage

10,/100 Mbit EthO

MAC 00:12:6D:AE:0B:24 MAC 00:12:6D:AE:0B:44 MAC 00:1F:C6:85:40:34
IP 152.168.11.24 P 152.168.11.44 P 152.168.10.4
10/100 Mbit Ethl
BEE2 CTRL MAC 00:0A:79:2B:16:70
IP 152.167.185.105
10/100 Mbit EthO
MAC 00:04:35:00:22:00
IP 152.168.10.2

Fig. 26: IPs an MACs table

The above picture lists the interfaces configuration for the 3 network:
1) 192.168.11.X the 10GbE Network
2) 192.168.10.X 10/100Mbit Private Network
3) 192.167.189.X 10/100Mbit Public Network

Control Software
Communicate with hardware

Control Software

Communicate with hardware

The workstation can communicate directly only with the BEE2 board which will be
also a bridge interface between the IBOB and us. It is possible to interact with hardware
registers of the project loaded on FPGA thanks to the BORPH.

BORPH is an extended Linux kernel that treats FPGA resources as native
computational resources on reconfigurable computers such as BEE2. As such, it is more
than just a way to configure an FPGA. It also provides integral operating system supports
for FPGA designs, such as the ability for an FPGA design to read/write to the standard
Linux file system. A user process in BORPH, can therefore either be a software program
running on a processor, or a hardware design running on a FPGA. A hardware design that
is running on a FPGA is called a hardware process.

BORPH uses regions of FPGA fabric as computation units to spawn hardware
processes. Each reconfigurable region is defined as a hardware region (hwr). Logically, it is
the smallest unit of a RC that is managed by BORPH. Physically, it can be implemented as
an entire FPGA in a multi-FPGA system, or a partially reconfigurable region within a FPGA.
On a BEE2 module, there is only one hwr type defined, the b2fpga, which corresponds to
one user FPGA.

The hardware process is seen as a software process running on Linux and it is located
on the directory “/proc” identified by the PID (Process Identifier). Subdirectories on that
folder contain lot of resources information, the most important are in “hw/ioreg” that
contains files for the input/output registers defined on the Matlab model file. Reading a
file content means read part of hardware region of that fpga. Depending of the
configuration assigned to a registers (“from/to processor”) at development level you are
allowed to read or even to write values.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Preliminary operations

IBOB bit file can be loaded via JTAG protocol (which require a hardware serial link)
into the FPGA. This is a volatile operation because after a power off the configuration will
be lost. IBOB board mounts an EEPROM that can be written statically and can contains
firmwares, and setting specific pin jumpers, the firmware will be automatically loaded on
FPGA at the power on.

Xilinx Impact is a software which provides JTAG support, you can just debug a jtag
chain or even read/write bit files from/to a target chip of the chain. Switching the
software in advanced mode you are allowed to generate a eeprom file (“mcs”) starting
from a bit file to a specific type of chip. IBOB EEPROM has been written with the mcs file
of the beamformer while, thanks to the BORPH, the BEE2 does not require this operation.

BEE2 file system can be accessed using secure shell protocols. The architecture file
synthetized (BOF file) for a BEE2 User FPGA must be copied on the BEE2 file system (in any
directory) using a sftp client. BOF file must have executable permission (‘x’) to all.

The flow chart on the following page summarize step by step the few operations
needed to perform an observation of a beam.

Booting up the system

Power on the IBOB board that will automatically load the firmware from the
EEPROM, you will recognize a led (bottom left) blinking with the PPS.

Open a ssh client and connect to the BEE2 (beecool host aliases) from the
workstation (called bee2, please do not confuse bee2 host with the BEE2 board):

oper@bee2:~$ ssh obs@beecool
Password: ####### (confidential)
Linux (BORPH) beecool 2.4.30-prel #1 Thu Nov 9 12:06:49 PST 2006 ppc

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Apr 30 19:43:58 1970 from 192.168.10.4
obs@beecool:~$

Control Software
Booting up the system

The up to date version of the latest bit file has been written into
the EEPROM, therefore, just switch on the IBOB

Thanks to the BORPH, loading a bit file on BEE2 FPGAs means
run a BOF (Borph Object File) file on a Linux operating system

The BOF will be seen as a Linux process and each hardware
registers on FPGA as files, therefore running a listening server on
the BORPH allows to interact with the hardware registers

It is possible now to write parameters on these registers by
instantiating a client on the workstation that sends commands
over the 10/100 Mbit Ethernet

Initialization

A 4

Depending on the target just write a file giving the start_time
and the stop_time of the observation. The antenna pointing at
that time has to point the specific declination.

Schedule an observation

A 4

A server on the storage machine has to be started before to load
the schedule.

Start a Recorder Server

Y

Load the schedule on the IBOB means load the stat and stop
time when data will be generated and ARM the entire system
(IBOB, BEE2 and the storage).

Arm the system

A blinking led on the IBOB indicates the observation is running.

At that time you can have a real time plot on the workstation.

At the end you can download the file saved on the storage
machine recognizable by the file name reporting time and target
information.

Fig. 27: State Machine Flow Chart

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

BEE2 BOF files for this project has been located on “sdeb/bof” directory, go there and
run the BOF file as executable, if success you will recognize a new command promt.

obs@beecool:~$ cd sdeb
obs@beecool:~/sdeb$ cd bof
obs@beecool:~/sdeb/bof$./b beamf sdeb fpgad4 2012 Nov 09 1706.bof

ER I e S b e S b I S b I S b b S b I S b I S db I b 4

* TinySH lightweight shell *

kA hhkhkrhkhk Ak hkrkhkhkrAhkhkhkrxkhk*x*k*x*%x

Design name : b beamf sdeb
Compiled on : 09-Nov-2012 17:06:29

DON'T PANIC ;-)

Type 'help' for help
Type '?' for a list of available commands

BEE2 %

Possible Failures: If a bof file is already running you get this error:

obs@beecool:~/sdeb/bof$./b beamf sdeb fpgad4 2012 Nov 09 1706.bof
-bash: ./b _beamf sdeb fpga4 2012 Nov 09 1706.bof: Device or resource busy
obs@beecool:~/sdeb/bof$

If the already running bof file is not related to this project just kill him and run the bof again.

obs@beecool:~/sdeb/bof$ ps -ef | grep ./b beamf sdeb fpga4 2012 Nov 09 1706.bof
obs 26558 26553 0 19:52 pts/8 00:00:00 ./b beamf sdeb..... 9 1706.bof
obs 26574 26566 0 19:58 pts/9 00:00:00 grep ./b_beamf sde... 9 1706.bof
obs@beecool:~/sdeb/bof$ kill 26558

Using that new command prompt you can interact with the hardware registers. These
operations have been simplified writing a python script that instantiate a listening server
that receive read/write commands over TCP and it has direct access to the registers files
on “/proc/PID/hw/ioreg” directory. Since the beecool shell is busy with the bof you have
to open a new one making a new ssh connection as before.

obs@beecool:~/sdeb$./start server.py

s EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Beamformer Server Launch Wizard
Please follow the instruction...

[1] 26576 ./b beamf sdeb fpga4 2012 Nov 09 1706.bof

Select the PID index: 1

Control Software
Booting up the system

Answer this question: if you see only one bof file type 1, if you see many bof file
running detect the bof you just run and type its index (the number on the left within the
brackets). Usually, should be the last of the list, but, if another user is running another bof
at the same time is not guaranteed. Several bof file name differ only of one digit, the
number of the fpga used, therefore pay attention on the targeted fpga.

FPGAl (usually IBOB2-BEE1)
FPGA2 (usually IBOB3-BEE2)
FPGA3 (usually IBOB4-BEE3)
FPGA4 (usually IBOB7-BEE4)

Sw N
[—

Select the branch: 2

Answer this question: if the antenna signals are connected on the IBOB n. 7 and there
is a 10Gb link between that IBOB and BEE2 FPGA4 (front-right) you have to answer 2.
Please verify always the hardware connections before to start.

igsaassdsssadsdsssadasdsiasadadsiaaadnddi

Starting server for
PID: 26576
BOF: ./b beamf sdeb fpga4 2012 Nov 09 1706.bof

server listening on port: 64001

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Initialization

The initialization phase customizes the system for a specific observation. There are
common parameters always valid such Ethernet configurations and values to reach the
desired bandwidth starting from a higher sampling frequency, and, parameters changing
day by day such antenna phase corrections in case we want to have a unique beam of
multiple antenna.

An initialization python script instantiates a TCP client which will send these
configuration parameters that have been previously written in a text file to the listening
server running on the BEE2. This text file can be manually modified. A python script has
been developed to automatically generate the configuration file to avoid (or at least
reduce) typos, it is an interactive scripts that require to answer to some questions.

Last login: Thu Nov 22 11:41:42 2012 from 192.167.189.65
oper@bee2:~$ cd /media/data/sdeb/
oper@bee2:/media/data/sdeb$ python config wizard test.py
FHEHH A AR A

Beamformer Configuration file Wizard

Please follow the instruction...

T it fomm - +

\ 2 \ 3 \

t-————————— - + BEE2 FPGAs
\ 1 \ 4

fomm e R ittt +

[1] BEE FPGA-1 (front - left)

[2] BEE FPGA-2 (rear - left)

[3] BEE FPGA-3 (rear - right)

[4] BEE FPGA-4 (front - right)

Which BEE2 FPGA are you going to use [1/2/3/4]12 4

[1] Fix 16.11
[2] Fix 16.12
Which data cast are you going to use [1/2]? 1

[1] LOFAR antennas
[2] NS receivers
[3] EW channels

Which antennas are connected to the system [1/2/3]? 3

Control Software
Initialization

Lastest phase calibrations have been done
on 14/11/2012 at 00:00:00 using radiosource 3C123

4E = +154.70863
5E = -1.2245701
2E = +00.000000
3E = +55.895791

Sw N
[T

"none" means channel off

Edit a channel by typing the index in the brackets
or type zero [0] to confirm the configuration:

The answers provided in this example will generate a file for a beamformer running
on the FPGA-4 of the BEE2 that talk with an IBOB having connected to its A/D input lines
the signals coming from the East-West arm of the Northern Cross Radio Telescope,
channels 2E, 3E, 4E and 5E.

The script loads automatically the latest calibration of the East — West channels. If the
observation we are going to do does not need to use 4 E/W channels it is possible to
disable a channels by editing the phase writing a “none”. When the phase corrections are
set the script ask to show the file generated and ask if save it.

The configuration file is ready to be saved.

Do you want to check before to save [y/n]? vy

S i i

#

Configuration file automatically generated by using
the Wizard on 22/11/2012 10:45:57 UT

NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS!

design global parameters
[global]

dec factor = 13

bee dec factor = 23

integration for on board data accumulation
integration = 100334

Common network parameters
monitor ip = 3232238346
storage ip 3232238347

pck length = 160
gbel name = monitor
gbe2 name = storage

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Parameters for the FPGA4 system
monitor port = 64003

storage port = 64004

gbel filename = gbe fpgad4 monitor.conf
gbe2 filename = gbe fpgad4 storage.conf
Data cast 16.11

data format = 1

[main_ fpga]

server = beecool:64001

#Phase shift in degrees for each single antenna
#none: mute antenna

d0 = +154.70863 # 4E

dl = -1.2245701 # 5E

d2 = 4+00.000000 # 2E

d3 = +55.895791 # 3E

d4 = none #
d5 = none #
d6 = none #
d7 = none #
d8 = none #
d9 = none #
d10 = none #
dll = none #
dl2 = none #
d13 = none #
dl4 = none #
dl5 = none #

igsaassdssaaasdddasdadddiasadasddasadanddasaaandsaaaaanddi

Do you want to save as fpgad.conf [y/n]? vy
oper@bee2:/media/data/sdeb$

The configuration file is ready to handle up to 16 input signals coming from more
than one IBOB. Finally it is possible to send this information to the BEE2 by running the
python script “sdeb_int.py” (there is a —L in lower case in the middle):

operlbee2:/media/data/sdeb$./sdeb init.py -1 fpgad.conf

2012-11-22 15:08:36,556 — ****XXXXXKKKKKKKKKKKKK KKK KKK KKK KKK KKK KKK
2012-11-22 15:08:36,556 — ****xxx%x TNITIALIZATION PROCESS ****#**x**xx
2012-11-22 15:08:36,556 — *xxkkokokskkk koo ok sk &k ko ok ok ok ok & &k ok ok ok ok ok K K Kk ok o

2012-11-22 15:08:36,557 - parsing configuration file fpgad.conf
2012-11-22 15:08:36,557 - Initializing the Space Debris system
2012-11-22 15:08:36,557 - Sending Master Reset to Bee2 and IBOBs
2012-11-22 15:08:36,884 - Setting equalization on main fpga
2012-11-22 15:08:36,885 - Setting (RE 0, IM 0) to: (140, 55)

Control Software
Initialization

2012-11-22 15:08:36,977 - Setting (RE 1, IM 1) to: (127, 253)
2012-11-22 15:08:37,071 - Setting (RE 2, IM 2) to: (127, 0)
2012-11-22 15:08:37,165 - Setting (RE_3, IM 3) to: (72, 106)
2012-11-22 15:08:37,259 - Setting (RE 4, IM 4) to: (0, 0)
2012-11-22 15:08:37,353 - Setting (RE 5, IM 5) to: (0, 0)
2012-11-22 15:08:37,447 - Setting (RE 6, IM 6) to: (0, 0)
2012-11-22 15:08:37,541 - Setting (RE 7, IM 7) to: (0, 0)
2012-11-22 15:08:37,634 - Setting (RE 8, IM 8) to: (0, 0)
2012-11-22 15:08:37,728 - Setting (RE 9, IM 9) to: (0, 0)
2012-11-22 15:08:37,822 - Setting (RE 10, IM 10) to: (0, 0)
2012-11-22 15:08:37,917 - Setting (RE 11, IM 11) to: (0, 0)
2012-11-22 15:08:38,011 - Setting (RE 12, IM 12) to: (0, 0)
2012-11-22 15:08:38,104 - Setting (RE 13, IM 13) to: (0, 0)
2012-11-22 15:08:38,198 - Setting (RE 14, IM 14) to: (0, 0)
2012-11-22 15:08:38,292 - Setting (RE 15, IM 15) to: (0, 0)

2012-11-22 15:08:38,387 - Setting decimation factor to 13
2012-11-22 15:08:40,361 - Setting Data Format to 16.11
2012-11-22 15:08:40,473 - Setting Packet Length to 160
2012-11-22 15:08:40,583 - Setting Monitor IP to 192.168.11.10
2012-11-22 15:08:40,694 - Setting Monitor Port to 64003
2012-11-22 15:08:40,804 - Setting Storage IP to 192.168.11.11
2012-11-22 15:08:40,914 - Setting Storage Port to 64004

2012-11-22 15:08:41,024 - Starting 10GbE interface: monitor

2012-11-22 15:08:41,302 - Starting 10GbE interface: storage

2012-11-22 15:08:41,386 - Performing time update for sync...

2012-11-22 15:08:42,092 - Sending: 2012/11/22 14:08:42 UT

2012-11-22 15:08:43,190 - Received: 2012/11/22 14:08:43 UT after 1 sec.
2012-11-22 15:08:43,190 - Time updated successfully

Initialization Process Successfully Completed!

oper@bee2:/media/data/sdeb$

It is extremely important that the last line reports a success message about the time
update, a failure may indicate that the running IBOB bit file might be wrong or that the
bee2 bof file has an issue. In any case if the time update fails restart from the beginning.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Scheduling

Scheduling an observation means to write a “start time” and a “stop time” in the
IBOB registers. This is done by another python script that instantiates a client socket and
send to the BEE2 (over the same port as for the init) the content of a text file, located just
for convention in the “sched” directory, as the following:

operlbee2:/media/data/sdeb$ more sched/dirac test ew.conf
[Obs]

System = fpgad

Start_time = 2012/11/13 09:27:00

Stop time = 2012/11/13 09:28:00

Target = targetname

Remember that all times are in UT. The system will produce data only between the
Start_time and Stop_time parameter. Target parameter it is a string that do not have
whitespace because will be a part of the output filename, therefore if you really need
please use only characters allowed, in any case a underscore character will precede and
follow this string. All parameters are case sensitive, do not edit the parameter name but
only the value. The output file name will always be saved starting whit the Start_time date
and time as the following example:

20121113 092700 targetname.dat

R A A A A A A A A A A AR A TAY .

Control Software
Storage

Storage

Before to arm the system and load the schedule it is mandatory to start the recorder
server on the storage machine that is the 192.167.189.66 (host alias batman) by opening a
ssh connection (or if possible open a terminal shell in local) and run a script located on
“/media/data/sdeb/” directory.

oper@bee2:~$ ssh -1 oper 192.167.189.66

Password:

Last login: Tue Nov 13 10:24:12 2012 from bee2desktop
Have a lot of fun...

oper@batman:~> cd /media/data/sdeb/

Depending on the system you are using launch the recorder server (they differ only
by the number of fpga):

oper@batman:/media/data/sdeb> ./fpga4 recorder server.py
server listening on port: 64005

If you got a failure message it means that a server is already running. To be sure to
do not lost the observation please kill the other instance of the server and start it again as
in the following example.

oper@batman:/media/data/sdeb> ./ fpga4 recorder server.py
Traceback (most recent call last):

File "./ fpga4 recorder server.py", line 74, in <module>
server = SdebTCPServer (("", 64005))
File "./ fpga4 recorder server.py", line 29, in init

SocketServer.TCPServer. init (self, addr, SdebTCPHandler)
File "/usr/lib64/python2.6/SocketServer.py", line 400, in init
self.server bind()
File "/usr/lib64/python2.6/SocketServer.py", line 411, in server bind
self.socket.bind(self.server address)
File "<string>", line 1, in bind
socket.error: [Errno 98] Address already in use

oper@batman:/media/data/sdeb> ps -ef | grep fpgad recorder server.py
oper 21620 21380 0 12:07 00:00:00 python ./ fpgad4 recorder server.py
oper 21623 21567 0 12:07 00:00:00 grep fpgad4 recorder server.py

oper@batman:/media/data/sdeb> kill 21620

oper@batman:/media/data/sdeb> ./ fpgad4 recorder server.py
server listening on port: 64005

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Run a schedule

Load the schedule and arm the system using the python script “sdeb_run” giving as
parameter the schedule file (there is a —L in lower case in the middle):

operlbee2:/media/data/sdeb$./sdeb run.py -1 sched/dirac test ew.conf

2012-11-13 11:45:21,073 — XA kA kAKX KKKKKKKKKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK
2012-11-13 11:45:21,073 = ***xxxxxxxxxxx*x*x ARM A NEW OBSERVETION *****x*xx*xx%
2012-11-13 11:45:21,073 — %% kkokoksk sk kkok ook ok sk ok ko ok ok ok ok ok ok %k ok ok ok ok o ok Kk ok ok ok ok o ok %k ok o

2012-11-13 11:45:21,073 - Parsing conf. file sched/dirac_ test ew.conf
2012-11-13 11:45:21,074 - Loading observation parameters...

2012-11-13 11:45:21,088 - Loaded START time 2012/11/13 09:27:00 UT
2012-11-13 11:45:21,099 - Loaded STOP time 2012/11/13 09:28:00 UT
2012-11-13 11:45:21,691 - System EW armed!

2012-11-13 11:45:21,711 - Data expected: about 22 MB (24080232 bytes)
2012-11-13 11:45:21,712 - Starting Recording data on 192.167.189.66:64005
2012-11-13 11:45:21,717 - Observation "targetname" Loaded Successfully!

As you can see the recording server has received a message with the observation info
and it is ready to save a file. As a confirmation on the storage terminal you should see
messages on that.

operlbatman:/media/data/sdeb> ./fpgad4 recorder server.py
server listening on port: 64005
Command received: record 1353598020 targetname 1353598080 24080232

FHEFHFE A A A AR AR RS R A

Executing: ./fpgadrecorder.py -o targetname -s 2012/11/13 09:27:00 -t
2012/11/13_09:28:00 -e 24080232

FHEHHHHA AR F AR A A FF AR AHF A AR F AR R

318 09:23:00 - INFO: Running with options:

318 09:23:00 - INFO: port: 64004

318 09:23:00 - INFO: pkg length: 8000

318 09:23:00 - INFO: fmt: >Q

318 09:23:00 - INFO: target name: targetname

318 09:23:00 - INFO: start time: 2012/11/13 09:27:00
318 09:23:00 - INFO: stop time: 2012/11/13 09:28:00
318 09:23:00 - INFO: output: data/20121113 092700 fpgad4 targetname.dat
318 09:26:59 - INFO: server listening

318 09:27:00 - INFO: recording...

318 09:27:59 - INFO: closing communication

318 09:28:00 - INFO: received up to package: 18931
318 09:28:00 INFO: closing recorder

B R R R R R R R R R 4

Control Software
Real time monitor

Real time monitor

DOO-+ < Ea|

Fig. 28: A real time FFT plot observing a debris in a bistatic radar configuration

During the observation there is the possibility to see a real time fft of the data
generated in the monitor pc running the python script “realtimefft.py”.

oper@bee2:~/andrea/bin$ python ./realtimespectra.py --help
Usage: realtimespectra.py [options]

Options:

-h, --help show this help message and exit

-p PORT, --port=PORT

-k PKG LEN, --pkg len=PKG LEN
package length expressed in 64b

-c FFTSIZE, --fftsize=FFTSIZE
number of fft channels

-1 INTEGR, --intgr time=INTEGR
number of integrations

-w WINDOW, --window=WINDOW
type of window, default=no window, possible value:
hamming, hanning, bartlett, kaiser (default shape 10%)

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

This script takes as parameters the number of the FFT channels, the integration time
and if needed also a window to be applied to the FFT.

Here is a screenshot of the observation of a debris (ID 18096) transiting the
23/11/2012 and detected by the system (left peak).

oper@bee2:~/andrea/bin$ python ./realtimespectra.py -c 1024 -1 100

The FFT of this picture is a 1024 channel FFT of 100 spectra integrated. In this
configuration you will see a refresh on the screen every about 1 second (100*1024 =
100K), but due to the low channel resolution (100 Hz) there are many cases in which the
information can be hidden with the noise, a post process of the same data using higher
resolution can show not only clear information in terms of frequencies but also the shape
of the passage (doppler shift). The following picture is a plot of the same data with
channel resolution of about 7 Hz without integrating any spectra.

10000

Ol O |

intensity (FFT unit)

1000 (=

] | \

) il

i JLld ! L B A IR AR

1.91x1¢6* 1.93x10*
frequency (Hz)

Fig. 29: The doppler shift of the debris ID 18096. Animating this plot the peak
moves from right to left

There are several consideration of how convenient is to use higher spectral
resolution or integrate more spectra but they are strictly case dependent (power of the
transmitter used, speed of the debris and so on...), but making real time FFT while
observing just as a preview does not really make sense to increase the channel resolution
stressing the CPU especially if there are more than one system going on at the same time.

47

Validation
Debug tools

Validation

Debug tools

In order to validate the system it has been necessary to develop software and make
some specific basic tests (like transmitting a signal and analyzing it in frequency) that
helped to solve few hidden bugs. The aim of this chapter is also focused on keeping
memory of the encountered problems and how they have been solved: this can be very
useful and can save time for future developments.

One of the useful debug tools is an omnidirectional
antenna placed on the roof of the Medicina building that
we have used to inject tones on the secondary lobes of
the array radiation pattern. Its RF coax cable is directly
connected to a signal generator, placed in the receiver
room, that provides sinusoidal monochromatic signals
with programmable power and frequency.

This antenna works in the frequency range between
25MHz to 1300MHz without adding gain.

The signal generators we have used are: a) the HP
8657B with an output frequency range of 100kHz to
2.6GHz (1Hz resolution) and amplitude from +13dBm to —
143.5dBm into (0.1db resolution); b) the Rohde&Schwarz
Fig. 30: Omnidirectional Antenna g1y Signal Generator with an output frequency range of
100kHz to 1000MHz (10Hz best
resolution, it depends on the output
frequency set) and output level from
+13dbm to -137dbm. Both the signal
generators have an internal oscillator
lockable to the station’s 10MHz
distributed from the Maser. One of
them has been configured and used to

Fig. 31: HP 86578 transmit a monochromatic tone with
the omnidirectional antenna to a frequency very close (~ 25KHz) to the center of the RF
bandwidth (408 MHz); the other one has been used for providing the A/D clock.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

The frequency analysis has been
performed using a software that
processes stored data because we do not
have in our labs a spectrum analyzer able
to reach the 1 Hertz resolution.

This software provides only results
useful for debug and it has been written
in IDL which is a scientific language. It is a Fig. 32: Rohde&Schwarz SMX
project based on widget running on a microsoft windows platform (even if the IDL code is
portable on every platform as it is if you do not use absolute file path), very easy to use
and user friendly (messages will help you to set parameters).

£] CROCE SPECTRA oo

Load File IC:\Usefs\Andr\eE“.Desldop\ZD‘lN123_050147_EW_18096_F Observation Duration: 4 minutes File size: 91 MB STRIP

STATS
Sample rate (Hz): 100334 Xmin (Hz): {-50167 Y max: |* 4|

FFT Channels: ’W X max (Hz): [W Y min: [1— EXTRACT
Integration time (ms): {653.178 Each spectra of 65536 channels takes 0.653178 seconds at this rate, using integration time of 700 ms you have 1 spectra
DATE and TIME Sec.micro timestamp fseek MIN MAX AVG STDEV Variance

0 Fii Nov 23 09:01:47 2012 0.000000| 1353661307 A 2 5 2 . : i

1 Fri Nov 23 09:01:47 2012 0.653178| 1353661307 - - - - - -

2 Fri Nov 23 09:01:48 2012 0.306357| 1353661308

3 Fri Nov 23 09:01:48 2012 0.959535 1353661308

4 Fri Nov 23 09:01:49 2012 0612714 1353661309

5 Fri Nov 23 09:01:50 2012 0.265892| 1353661310

6 Fri Nov 23 09:01:50 2012 0.919070| 1353661310 - - - - - - ¥

Fig. 33: The main widget of the IDL spectrometer

Validation
Debug tools

Running the IDL project it is shown the main widget as in the picture above. The
upper part where it is shown an artistic view of the Medicina station and its radio
telescopes it is the plot drawn area.

By clicking on the LOAD push button you can select the input file on a dialog window.
This input file is the “dat” file saved by the beamformer storage. The size of the file and
the observation time will be reported taking into account the value written into the
“sample rate” text box, by default, this value has been set to 100334Hz which is the
sample rate of the beamformer.

The FFT channel and the integration time needs to be set depending on what we are
going to investigate. If we want to check if the monochromatic tone has been detected at
the expected frequency we need to have a channel resolution of 1 Hz, therefore, if we set
65536 number of channel over a sample rate of 100KHz the resulting resolution is 1.53Hz,
remembering that the FFT it is an algorithm optimized to work to 2 power numbers.
However, increasing the number of channels means increase the number of samples
needed to compute the FFT, that means you are increasing the time window. If we want
to see a fast debris transiting over the antenna beam using many samples to have a high
accuracy can be a wrong approach. The following table shows some elementary
configurations with very interesting numbers:

Num. of Channels Chan. Resolution (Hz) Time (s)
1024 97.98242 0.010205912
2048 48.99121 0.020411825
4096 24.49561 0.040823649
8192 12.2478 0.081647298
16384 6.123901 0.163294596
32768 3.061951 0.326589192
65536 1.530975 0.653178384
131072 0.765488 1.306356768

Tab. 7: Channel Resolution and Time Window over Number of Channels

This table is useful but incomplete, because increasing the spectra resolution (and
consequently the time window) the measured power of the detected debris will decrease
but we have no measured how long in terms of db. On the other hands, if you are looking
to a constant tone, which is not a pulse, increasing the time window and the channel
resolution also the frequency line of the tone will increase because the power of the
signal will be not affected by the “lower” frequencies contained on the same channel.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Sampling

The samples must be acquired regularly, this is the requirements of the Fourier
Transform. If the samples are not equally spaced in time the resulting frequencies will be
wrong. To test if the sampler is working well it is necessary to analyze carefully the spectra
using the higher channel resolution, possibly 1 Hz per channel.

The test consists to transmit a tones of a certain frequencies with the
omnidirectional antenna and look at the frequencies line in the spectra, one at the time,
they have to match.

inkensity (FFT und)

—4x10* -2x10* o
frequency (Hz)

Load Fle F‘MW&N\MWQHOLIM_EWM_&_ Observation Dumation. 3munutes Fesze 62ME TRIP

_ sme |
STATS I

Sarnple rate (Hs) |103134 Xen (Hz) |-50167 Y max |1003000
EXTRACT l

FFT Channels 65536 Xmax (M) (50167 Ymn [1

Ftegraticn tme fra) [653 172 Each spectra of 65536 channels takes 0 653178 seconds ot this rate. using rtegration time of 1000 =8 you have | specta

DATE and TIME 300 mcr fooek MiN MAX AVG STOEV Voo |
Wed Nov 07 13:48:00 2012 0000000 1352296080 - - - . . . A

Wed Nov 07 134800 2012 065M178 1352296080

Wed Nov 07 134801 2012 0308357 1352296081

Wed Nov 07134801 2012 0959535 1352296081

Wed Nov 07 134802 2012 0612714 1352296082

Wed Nov 07 134803 20012 0265892 1352296083

Wed Nov 07 134803 2012 03915070 1352296083 - . - - - - -
L

O eewN -

Validation
Sampling

Making this test we have found a misbehavior of one signal generator, the HP 8657B
that probably has begun to work bad. We have scan many frequencies as seen on the
previous picture and analyzing the tones at Hertz resolution and comparing the signal
generators we have found very little difference as shown on the following pictures:

FFT — Integraticn of 1 spectrao

e
|

10°

| IIHIM

104

| IIHIM

103

B A o

1003x10* —3.002x10* —Joctt=10 —3.000=104 —2.998x10" —Z.598x10° —2.997x=
frequency (Hz)

Fig. 35: Frequency 407.970kHz sampled using the HP 8657B as clock sampler.
The read frequency results 407.974kHz, 4Hz difference

FFT — Integraticn of 1 spectra

10000

1aco

==

‘-h-___l‘__\

||||||||| | |
—J.003x10* —E002x10* —J.001={0* —3.000=10* —2.995=10* —2.oa8x10* —2.997x
frequency (Hz)

Fig. 36: Frequency 407.970kHz sampled using the Rohde&Schwarz SMX as clock sampler.
The read frequency results exactly 407.970kHz

IRA 46

2/12

A.Mattana, G. Naldi, G. Pupillo

Fast Fourier Transform Considerations

There is an important consideration to be done talking of channelization and
accuracy of FFT. As you can see on the previous pictures also the peak observed with the
Rohde&Schwarz is not exactly centered to the 407.970kHz frequency. This is due by the
definition of the FFT algorithm which is an optimized extension of the Fourier Transform,
computational complexity is reduced from N? to N -log, (N). Regarding complex input
data, frequency lines occur at intervals Af, where:

Af = Total Bandwidth ~ Fj
~ Number of Channels N

and because sample rate and number of channels are not necessarily multiple, most of
the time Af is not an integer number. The FFT algorithm works efficiently if the number of
channels is a 2’s power number and the total bandwidth has not been chosen taking into
account this aspect. Each channel can be referred to as frequency bins (or FFT bins)
because you can think of an FFT as a set of parallel filters of bandwidth Af centered at
each frequency increment of Af and it contains a power contribute of frequencies
contained on the same channel.

o sy
r2 | , 2
<< Af s Af « Af s

b ° ° ! o
fo fi > fn-1 fn]
————— >

1
Af Af Af Af ar A
0 = Af + 2-0f+5 N-D-af-= NA -5 fs

Fig. 37: FFT bins

The above picture shows how the red points (FFT lines) are the center of the FFT bins
(or FFT channels) of Af width (unless the first and the last channel that have half width)
bounded within

Af Af
N*Af—? < fy < N*Af+7

Looking at our application, in the specific configuration of using 65536 FFT channels

Validation
Fast Fourier Transform Considerations

1

A = B 100334 1531
-~ N 65536

where the central frequency 408MHz is placed on the channel number 32768 and
represents the power contribution between

1.531 1.531
408MHz — — < fn < 408MHz + —

2

That means, if we want to check a specific frequency we should use frequencies
which correspond to the center of that frequency channel. For instance the center of the
frequency channel drawn on the previous pictures, the 407.970MHz, should have been
407970000.404Hz, and it contains the power measured within the limit:

[407969999.639, 407970001.170]

which includes the 407.970kHz frequency line, but its contributed has been drowned in
the 407970000.404Hz line. As a confirmation, the peak of the measured tone on the
second picture (Rohde&Schwarz) is just to the right of the -30kHz (relative to the center of
408MHz, therefore 407.970MHz) of about half Hertz confirming the calculated center
(407970000.404Hz), but is representing also the tone transmitted to exactly 407.970MHz.

Even if the frequency to be transmitted should match with a center of a bin, the
frequency resolution of the signal generators (1Hz in case of the HP and 10Hz the
Rohde&Schwarz) does not allowed to fit exactly the requirements, therefore frequencies
for the test have been chosen arbitrary.

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Signal Generation Report

Here shown in the next table the results of the scan test:

Frequency HP 8657B Rohde&Schwarz SMX
(MHz) A (Hz) A (Hz)
407.960 0 0
407.970 +4.5 0
407.975 0 0
407.980 +21 0
407.990 +21 0
408.010 +22 0
408.020 +22 0
408.025 +25 0
408.030 +24 0
408.040 +20 0

Tab. 8: Delta Frequencies of the two signal generators

Both the signal generators have been locked to the same 10MHz distributed from
the Maser, we have investigated also if the level of the reference input for the HP was too
high and saturated but it was within the specifics, therefore we conclude that the HP is
not suitable to be used as a A/D clock generator for spectrometry at that frequencies,
maybe the PLL of the synthesizer has started to have troubles.

R A A A A A A A A A A AR A TAY .

Results

Results

Here we examine the results of some observational tests performed in order to
check the beamformer system. The aim of these measurements was the comparison
between the simulated and the observed beams.

The Northern Cross incapability to track objects and the narrow bandwidth (100 KHz)
of the Space Debris acquisition system imposed the observation of very strong radio
sources at 408 MHz (Tab. 1) in order to have a good SNR.

Source RA J2000 Dec J2000 Flux density @ 408 MHz
[hh mm ss.s] [dd pp ss.ss] [yl
Cyg-A 1959 28.4 +40 44 02.10 4862
Tau-A 0534319 +22 0052.2 1215
Vir-A 123049.4 +12 23 28.04 486

Tab. 9: The three radio-sources observed for the beamformer test.

The total power was obtained with 1 second of time integration from the data
acquired in the time domain. It allowed us to describe the beam shape for both a single
receiver and a beam synthetized from 4 receivers. The receiver phases were previously
calibrated utilizing the interferometric fringes recorded with 2 MHz band.

R TNy

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

The theoretical E-plane primary beams of the two configurations are shown in Fig.38.

BEAMPATTERN

—4 Receivers
7N T~ | —1 Receiver

-0.5

) /
/ \
_ / \
15 // \
/ \
// \\
25

-0.2587 -0.2 -0.15 -0.1 -0.05

Normalized gain [dB]
N

|
—

0 0.05 0.1 0.15 0.2 0.25
Angle [deg.]

Fig. 38: Normalized E-plane power patterns calculated for a single E-W receiver (dotted black line) and
for a synthetized beam of 4 receivers (continuous blue line).

The theoretical -3dB beam width of a single E-W channel is about 0.4°, while the sum
of the 4 channels yields a value of about 0.1°. These values were compared to those
obtained from the signal total power recorded during the transit of Cygnus-A (Fig. 39),
Virgo-A (Fig. 40) and Taurus-A (Fig. 41) within the antenna beam. A synthetized beam of 2
receivers was also produced for the Taurus-A observation.

Results

300000 T
280000 —+ -
260000 + Configuration .
240000 + - = — IR 4
220000 i
200000 —+
180000 —+
160000 —+
140000 —+
120000 —+
100000 —+
80000
60000 —+
40000 —+
20000 -+
0 == | I
-200 -150 -100 -50 0 50 100 150 200
Time from transit [s]

Signal power [arbitrary units]

Fig. 39: Transit of Cygnus-A observed by a single E-W receiver (dashed black line) and by a
synthetized beam of 4 receivers (continuous blue line).

60000 ,
55000 - -

Configuration

50000 —+ -

— — — - 1Rx

45000 —+ 4
40000 —+

35000 —+
30000 —+
25000 —-
20000 —-
15000 —+
10000 +

Signal power [arbitrary units]

5000 —++
0

-200 -150 -100 -50 0 50 100 150 200
Time from transit [s]

Fig. 40: Transit of Virgo-A observed by a single E-W receiver (dashed black line) and by a
synthetized beam of 4 receivers (continuous blue line).

M M M M S S S N S N S S N n £

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

110000 ,

100000 —+ .

Configuration

90000 —+ arRx| 4

— - — 2Rx
— — — = 1Rx

80000

70000
60000
50000
40000
30000

Signal power [arbitrary units]

20000
10000
0

-200 -150 -100 -50 0 50 100 150 200
Time from transit [s]

Fig. 41: Transit of Taurus-A observed by a single E-W receiver (dashed black line), by a
synthetized beam of 2 receivers (dashed dotted red line) and of 4 receivers (continuous blue line)

The half power beamwidth, 9y4pgw, can be calculated according to the following
equation:

o 15° COS(S)AtHPBW
Yupw(®) = 3600

where

O = source declination
Atypgw = transit time, expressed in s, at half power signal

The calculated beamwidths as well as the signal amplitude ratios acquired by the
different antenna configurations are in good agreement with the theoretical values for
Virgo-A and Taurus-A. Whereas the Cygnus-A expected beamwidth and signal amplitude
significantly differ from the observed ones. The disagreement was probably due to the
analogue receivers saturation caused by the extremely high flux of this source.

Moreover the maximum of the signal, corresponding to the transit of the source at
the local meridian, happens some seconds earlier than expected. This time difference
could be caused by an antenna mechanical misalignment of about one arcmin in the East
direction.

B S A RS

Results

Finally, the system has been tested in a real observational scenario during the space
debris radar campaigns carried out by the Northern Cross array on July and December
2012. Several targets orbiting in LEO were successfully acquired by this beamformer
system with a very high SNR.

An example of space debris radar detection is the observation of the first passage of
the NEXTSAT satellite during the 2012 December 17 radar session. This target was a
deactivated satellite (USSTRATCOM catalogue n. 30774) orbiting in LEO. The echo of
NEXTSAT (Fig. 42), having a mean extimated Radar Cross Section (RCS) of 3.679 m?, was
detected in the frequency domain by a FFT analysis with 16384 channels, corresponding
to a spectral resolution of 6.1 Hz/ch.

01 T

11 1111l

0.01

1 lllJllII

0.001

lllJIIII

1

0.0001

1E-005

Signal amplitude [arbitrary units]

1E-006

1E-007

0 2000 4000 6000 8000 10000 12000 14000 16000

Spectral channel #

Fig. 42: Spectrum of the echo from the target NEXTSAT detected during on 2012 December 17 at
09:01:06.25 UT. The spectral window is centred at the transmitting frequency. Due to the extremely high
SNR of the echo, the signal amplitude is plotted in logarithmic scale.

A A A A A A A A A Y .

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

The target was orbiting at an altitude of 510.49 km with a bistatic slant range (signal
total path length) of about 1057 km. The observed transit time and bistatic frequency
Doppler shift were slightly different to those calculated from the TLEs by the orbital
numeric propagators (e.g. SGP4). These differences between observed and calculated
values are of extremely importance to improve the knowledge of the target orbit that is
one of the most important goal of the space debris investigation.

61

Python scripts
Beecool

Python scripts

Beecool

Readme
Copy all those files in the same bee2 directory.

Requirements:
- Atleast one bof file running

Run “start_server.py” and follow the instructions.

start_server.py

#! /usr/bin/env python

Search the bof PID.

eg usage:

import os, time

branches=['61001"', '62001', '63001','64001"]
os.system("ps -ef | grep bof | grep fpga > pid/pids.txt")
print "\n####FEFFRFFEEFFREFEREF R A SR A F A F A F SR FF S \ D"

print "Beamformer Server Launch Wizard"

print "\nPlease follow the instruction...\n"
data = []
for line in open ("pid/pids.txt"™,'r') .readlines():

#print line.split () [1], line.split() [7]
data.append([line.split () [1],line.split () [7]1])
c=0
data.pop ()
for i in data:
print '['+str(c+l)+'] ', datalc][0], datalc][1]
c = c+l
print "\nSelect the PID index: ",
pid = raw input ()

print "\n\n[l] NS (usually IBOB2-BEEl)"
print "[2] EW (usually IBOB7-BEE4)\n"
print "Select the branch: ",

branch = raw_input ()

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

time.sleep(0.2)

print "\n####FHFEFEEE AR AR AFAAE AR AE AR AR AR ASAEAET

print "\nStarting server for"

print "™ PID: "+data[c-1][0]

print " BOF: "+datal[c-1][1]+"\n"

time.sleep(0.2)

cmd="./bee sdeb server.py -p "+branches[int (branch)-1]+" -i "+data[c-1][0]
#print cmd

os.system(cmd)

bee sdeb_server.py

#!/usr/bin/env python

Server running on bee2 waiting for nitialization commands.
import struct

import sys

import os

import SocketServer

from optparse import OptionParser

class PIDException (Exception) :
def init (self, msg):
Exception. init (self, msg)

class CommandException (Exception) :
def init (self, msg):
Exception. init (self, msg)

class LofarTCPHandler (SocketServer.StreamRequestHandler) :
def handle (self):

self.data = self.rfile.readline() .strip()

print "received: " + self.data

args = self.data.split ()

try:
res = self.server.execute (args)
self.wfile.write (str(res))

except CommandException, ce:
self.wfile.write(ce.args[0])

class LofarTCPServer (SocketServer.TCPServer) :
def init (self, addr, pid):
SocketServer.TCPServer. init (self, addr, LofarTCPHandler)
self.pid = pid

self.base path = "/proc/%s/hw/ioreg/"% (pid,)
self.devs = os.listdir(self.base path)
self.commands = {
"listdev": self.listdev,
"write int": self.write int,
"read int": self.read int,

"read bram": self.read bram,
"ask pid": self.ask pid,
"start gbe": self.start gbe,

def listdev(self):
return " ".join(self.devs)

R A A T A T,

Python scripts

Beecool

def ask pid(self):
return self.pid

def valid register(self, name):
if not name in self.devs:
raise CommandException ("Register %s not found."%(name,))

def read_int(self, reg name) :
self. valid register (reg name)
f = open(os.path.join(self.base path, reg name), "rb")
bs = f.read(4)
f.close()
res = struct.unpack (">L", bs) [0]
return res

def write int(self, reg name, reg value):
self. valid register(reg name)
try:
reg value = int(reg value)
print "writing: " + str(reg value)
except:

raise CommandException("write int second argument should be

integer")

f = open(os.path.join(self.base path, reg name), "wb")
f.write(struct.pack(">L", reg value))

f.flush ()

f.close()

return "SUCCESS"

def start gbe(self, gbe conf file, gbe name):
print "Executing: cp "+gbe conf file+" "+self.base path+gbe name
a = os.system("cp "+gbe conf file+" "+self.base path+gbe name)
return a

def read bram(self, bram name, bram len):
self. valid register (bram name)

f = open(os.path.join(self.base path, bram name), "rb")
bs = f.read(bram len)
f.close ()

return bs

def execute(self, args):
if not self.commands.has key(args[0]) :
raise CommandException ("Command %s not found."$%(args[0],))
if len(args) > 1:
try:
res = self.commands[args[0]] (* (args[l:]))
except TypeError, te:
raise CommandException(te.args[0])
else:
res = self.commands[args[0]] ()
return res

def verifyPID(pid):

pid = str(pid)

pipe = os.popen("ps a | grep %$s"%(pid,))
pss = pipe.readlines|()

pipe.close()

an

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

pss = [ps[:-1].split() for ps in pss if ps.split() [0] == pid]
if not pss:
raise PIDException ("Process %s not found."$%(pid,))
if not pss[0][-1].endswith(".bof"):
raise PIDException ("Process %s is not a running bof file design"$%$(pid,))

if name == " main ":

op = OptionParser ()

op.add option('-p', '--port', dest='port', type='int', default=60001,
help='The listening port')

op.add option('-i', '--pid', dest='pid',
help='The process id (pid) of the running bof file')

opts, args = op.parse args(sys.argv[l:])

pid = str(opts.pid)

try:

verifyPID (pid)
except PIDException, pe:

print pe.args[0]

sys.exit (0)

#server = SocketServer.TCPServer (("localhost", opts.port), LofarTCPHandler)
server = LofarTCPServer (("", opts.port), pid)
try:

print "server listening on port: " + str(opts.port)

server.serve forever ()
except KeyboardInterrupt:
print "closing communication"
del (server)
sys.exit (0)

gbe _fpgal monitor.conf gbe _fpgal storage.conf

begin begin
mac = 00:12:6D:AE:0B:13 mac = 00:12:6D:AE:0B:14
ip = 192.168.11.13 ip = 192.168.11.14
gateway = 192.168.11.10 gateway = 192.168.11.10
port = 61003 port = 61004

end end

gbe _fpga2 monitor.conf gbe _fpga2 storage.conf

begin begin
mac = 00:12:6D:AE:0B:23 mac = 00:12:6D:AE:0B:24
ip = 192.168.11.23 ip = 192.168.11.24
gateway = 192.168.11.10 gateway = 192.168.11.10
port = 62003 port = 62004

end end

Python scripts

gbe _fpga3_monitor.conf gbe fpga3 storage.conf

begin begin
mac = 00:12:6D:AE:0B:33 mac = 00:12:6D:AE:0B:34
ip = 192.168.11.33 ip = 192.168.11.34
gateway = 192.168.11.10 gateway = 192.168.11.10
port = 63003 port = 63004

end end

gbe_fpga4 _monitor.conf gbe_fpgad storage.conf

begin begin
mac = 00:12:6D:AE:0B:43 mac = 00:12:6D:AE:0B:44
ip = 192.168.11.43 ip = 192.168.11.44
gateway = 192.168.11.10 gateway = 192.168.11.10
port = 64003 port = 64004

end end

Control

Readme

Decide how many receivers are you going to use and type the phase corrections
on the ew beamf.conf (or ns beamf.conf) file.

Requirements:
- a bof file running on the bee2 (beecool)
- a server running on the bee2 (beecool)
- a recorder server running on 192.167.189.66 (batman)
1. Initialization
Run: ./sdeb_init.py -1 ew beamf.conf
Example:
Last login: Tue Nov 13 10:16:11 2012 from 192.167.189.65

oper@bee2:~$ cd /media/data/sdeb/
oper@bee2:/media/data/sdeb$./sdeb_init.py -1 ew_beamf.conf

2012-11-13 10:19:16,204 — H*&xkkkxdkkrdkkhkkxhkkxhk®xhk®xhk®xhk®xk
2012-11-13 10:19:16,294 - **x**%*x*x INITIALIZATION PROCESS ***x**x*x%
2012-11-13 10:19:16,204 — H*&xkkkxdkkrdhkkhkhkxhkhkxhkkxhkkxhk®xhk®xk

2012-11-13 10:19:16,294 - parsing configuration file ew beamf.conf
2012-11-13 10:19:16,295 - Initializing the Space Debris system
2012-11-13 10:19:16,295 - Sending Master Reset to Bee2 and IBOBs
2012-11-13 10:19:16,630 - Setting equalization on main fpga
2012-11-13 10:19:16,630 - Setting (RE 0, IM 0) to: (127, 0)
2012-11-13 10:19:16,722 - Setting (RE_1, IM 1) to: (127, 0)
2012-11-13 10:19:16,816 - Setting (RE_2, IM 2) to: (127, 0)

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

2012-11-13 10:19:16,909 - Setting (RE_3, IM 3) to: (127, 0)
2012-11-13 10:19:17,003 - Setting (RE 4, IM 4) to: (0, 0)
2012-11-13 10:19:17,096 - Setting (RE_5, IM 5) to: (0, 0)
2012-11-13 10:19:17,190 - Setting (RE_ 6, IM 6) to: (0, 0)
2012-11-13 10:19:17,283 - Setting (RE_7, IM 7) to: (0, 0)
2012-11-13 10:19:17,377 - Setting (RE_8, IM 8) to: (0, 0)
2012-11-13 10:19:17,471 - Setting (RE_9, IM 9) to: (0, 0)
2012-11-13 10:19:17,564 - Setting (RE 10, IM 10) to: (0, 0)
2012-11-13 10:19:17,658 - Setting (RE_11, IM 11) to: (0, 0)
2012-11-13 10:19:17,751 - Setting (RE 12, IM 12) to: (0, 0)
2012-11-13 10:19:17,845 - Setting (RE_13, IM 13) to: (0, 0)
2012-11-13 10:19:17,939 - Setting (RE 14, IM 14) to: (0, 0)
2012-11-13 10:19:18,032 - Setting (RE_15, IM 15) to: (0, 0)

2012-11-13 10:19:18,126 - Setting decimation factor to 13

2012-11-13 10:19:20,099 - Setting Data Format to 16.11

2012-11-13 10:19:20,211 - Setting Packet Length to 160

2012-11-13 10:19:20,321 - Setting Monitor IP to 192.168.11.10 (3232238346)
2012-11-13 10:19:20,432 - Setting Monitor Port to 64003

2012-11-13 10:19:20,542 - Setting Storage IP to 192.168.11.11 (3232238347)
2012-11-13 10:19:20,651 - Setting Storage Port to 64004

2012-11-13 10:19:20,761 - Starting 10GbE interface: monitor

2012-11-13 10:19:20,834 - Starting 10GbE interface: storage

2012-11-13 10:19:20,909 - Performing time update for sync...

2012-11-13 10:19:21,014 - Sending: 2012/11/13 09:19:21 UT (timestamp: 1352798361)
2012-11-13 10:19:22,155 - Received: 2012/11/13 09:19:22 UuT (timestamp:
1352798362)

2012-11-13 10:19:22,155 - Time updated successfully

Initialization Process Successfully Completed!
2. Prepare an observation file
- Edit a sched file on 'sched' directory.
Example:
oper@bee2:/media/data/sdeb$ more sched/dirac_test ew.conf
[Obs]
System = EW
Start_time = 2012/11/13 09:27:00
Stop_time = 2012/11/13 09:28:00
Target = targetname
3. Load observation file and arm the system

- Run "./sdeb_run.py -1 sched/dirac_test ew.conf" with the sched file

oper@bee2:/media/data/sdeb$./sdeb run.py -1 sched/dirac_test ew.conf

2012-11-13 10:26:23,423 -
Kk kKKK K K ok ok ok ok ok ok kK ok Kk ok ok ok ok ok ok ok kK K ok ok ok ok ok ok ok ok ko ok kK ok ok ok ok ok ok kR Kk

2012-11-13 10:26:23,423 - KKK KKK KA A A KK XXX K ARM A NEW OBSERVETION
Kk kKKK K Kk ok ko ok ko kK K

2012-11-13 10:26:23,423 -

hhkrkhkhkhk kA hkkhkhhkrhkhkrhkhkhhhkhhkrhhkrhhkrhkhkhkhhkhkrhkhkrhkhkrhkhkhkhkhkhhkxhkxkkxx*x

2012-11-13 10:26:23,423 - Parsing configuration file sched/dirac_test ew.conf
2012-11-13 10:26:23,423 - Loading observation parameters...

2012-11-13 10:26:23,439 - Loaded START time 2012/11/13 09:27:00 UT (timestamp:
1352798820)

Python scripts
Control

2012-11-13 10:26:23,451 - Loaded STOP time 2012/11/13 09:28:00 UT (timestamp:
1352798880)

2012-11-13 10:26:24,042 - System EW armed!

2012-11-13 10:26:24,060 Data expected: about 22 MB (24080232 bytes)

2012-11-13 10:26:24,061 - Starting Recording data on 192.167.189.66:64005
2012-11-13 10:26:24,067 Observation "targetname" Loaded Successfully!

oper@bee2:/media/data/sdeb$

datacon version.py (author Marco Bartolini)

"""Module dataconversion:

functions to convert numbers to and from simulink representation.
Permits conversion of 8, 16 and 32 bit representation of signed and unsigned
decimal numbers, with or without binary point.

classes:
ConversionError: bit mismatch and format incopatibility

functions:
get conversion t: factory function of conversion specs
unsigned2real: convert from simluink representation
bytes2real: convert binary data from simulink representation
stream2real: convert array of binary data
real2unsigned: convert a real number into simluink representation

import struct

class ConversionError (Exception) :
def init (self, msg):
Exception. init (self, msg)

def get conversion t(bits, bin point, signed=False, scaling=1.0):
bits = the number of bits
bin poin = simulink binary point position
signed = True if Fix, Flase if UFix
scaling = optional scaling to be applied after the conversion

returns a conversion structure that can be applied in both directions of
conversion for the given specs.

conversion t = {}
conversion t["bits"] = bits
conversion t["bin point"] = bin point
conversion t(["signed"] = signed
conversion t["scaling"] = scaling
conversion t["dec step"] = 1.0 / (2 ** bin point)
#dec_max = dec_mask * dec_step
conversion t["dec mask"] = sum([2 ** i for i in range(bin point)])
if bits ==
conversion t["fmt"] = "B"
elif bits == 16:
conversion t["fmt"] = "H"
elif bits == 32:

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

conversion t["fmt"] = "I"
else:
raise ConversionError ("numer of bits not supported: " + str(bits))
if signed:
_get signed params (conversion t)
else:
_get unsigned params (conversion t)
return conversion t

def get unsigned params (conv) :

conv["sign mask"] = 0

conv["int min"] = 0

conv["int mask"] = sum ([2 ** i for i in range (conv ["bin point"],
conv["bits"])])

conv["int max"] = sum([2 ** i for i in range(conv["bits"] -

conv["bin point"])])

def get signed params (conv):

conv["sign mask"] = 2 ** (conv["bits"] - 1)
conv["int min"] = -1 * (2 ** (conv["bits"] - 1 - conv["bin point"]))
conv["int mask"] = sum([2 ** i for i1 in range(conv["bin point"], conv["bits"]
- 11)
conv["int max"] = sum([2 ** i for i1 in range(conv["bits"] -
conv["bin point"] - 1)1])

def unsigned2real (uval, conv):

uval the numeric unsigned value in simulink representation
conv = conv structure with conversion specs

returns the real number represented

res = 0

int val = ((uval & conv["int mask"]) >> conv["bin point"])
dec val = conv["dec step"] * (uval & conv["dec mask"])

sign = uval & conv["sign mask"]

res = conv["int min"] + int val + dec val

return (res / conv["scaling"])

def bytes2real (ub, conv, endianness="@"):

ub = binary number in simulink representation
conv = conv structure with conversion specs, dimensions must match
endianness = optionally specify bytes endianness for unpacking

return the real number represented

data = struct.unpack(endianness + conv["fmt"], ub) [0]
return convert (data, conv)

def stream2real (stream, conv, endianness="Q@"):

size = len(stream) // (conv["bits"] // 8)
fmt = endianness + str(size) + conv["fmt"]
data = struct.unpack (fmt, stream)

data = [convert(d, conv) for d in datal]

return data

def realZunsigned(real, conv):

Python scripts
Control

the real number to be converted into simulink representation
conv structre with conversion specs

real
conv

return the unsigned int for the simulink representation. Raise a
ConverisonError if conv structre can't handle the number.
if not conv["signed"] and real < 0:
raise ConversionError ("cannot convert " + str(real) + " to unsigned
representation™)
if real < 0O:
sign = 1
real = real - conv["int min"]
else:
sign = 0
int val, dec val = divmod(abs(real), 1)
int val = int(conv["int min"] + int val)
int_val = int val & (conv["int mask"] >> conv["bin _point"])
val = int val
dec = 0
while val < real and dec < conv["dec mask"]:
val += conv["dec step"]

dec += 1
#Adjusting rounding error
if (val - real) > (real - val + conv["dec step"]):
dec -= 1
if sign == 1:
return conv["sign mask"] + ((int _val << conv["bin point"]) &
conv["int mask"]) + dec
else:
return ((int val << conv["bin point"]) & conv["int mask"]) + dec

pack _sdeb_pars_conf.py (author Marco Bartolini)
import ConfigParser

def get fpga conf (conf, section):

fpga = {}
fpga['server'] = {'addr': conf.get(section, "server").split(":")[0],
'port' : int (conf.get (section, "server").split(":")[1])
}
#fpgal'equalization'] = [(conf.getint (section, "RE %i"%(1,)),

conf.getint (section, "IM %i"%(i,))) for i in range(8)]
fpgal['equalization'] = []
for i in range (16):
try:
fpga['equalization'].append(get float comment (conf, section,
"dsi"s(1,)))
except ValueError:
fpga['equalization'] .append (None)
return fpga

def get float comment (conf, section, option):
return float (conf.get (section, option).split() [0])

def parse settings(filename) :
conf = ConfigParser.SafeConfigParser ()

R A A T A T,

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

#print "Parsing config file " + filename
res = {}
if not [filename] == conf.read(filename) :

print conf.read(filename)

print "Cannot parse file " + filename

return res
res["dec factor"] = conf.getint("global", "dec factor")
res["bee dec factor"] = conf.getint("global", "bee dec factor")
res["integration"] = conf.getint ("global", "integration")
res["main fpga"] = get fpga conf (conf, "main fpga")
res["data format"] = conf.getint ("global", "data format")
res["pck length"] = conf.getint("global", "pck length")

res["gbel filename"] = conf.get("global", "gbel filename")

[
res["gbel name"] = conf.get("global", "gbel name")
res["monitor ip"] = conf.getint("global", "monitor ip")
res["monitor port"] = conf.getint("global", "monitor port")
res["gbe2 filename"] = conf.get("global", "gbe2 filename")
res["gbe2 name"] = conf.get("global", "gbe2 name")
res["storage ip"] = conf.getint("global", "storage ip")
res["storage port"] = conf.getint("global", "storage port")

return res
if name == " main ":
filename = "ns beamf time.conf"

options = parse settings(filename)
print options

pack _sdeb_pars_obs.py

import ConfigParser

def parse settings(filename) :
conf = ConfigParser.SafeConfigParser ()

res = {}

if not [filename] == conf.read(filename) :
print conf.read(filename)
print "Cannot parse file " + filename

return res

res["System"] = conf.get ("Obs", "System")
res["Start time"] = conf.get ("Obs", "Start time")
res["Stop time"] = conf.get ("Obs", "Stop time")
res["Target"] = conf.get ("Obs", "Target")

return res

pack sdeb pars systems.py

import ConfigParser

Python scripts
Control

def parse settings(filename,obs system) :
conf = ConfigParser.SafeConfigParser ()

res = {}

if not [filename] == conf.read(filename) :
print conf.read(filename)
print "Cannot parse file " + filename

return res

res|['server'] = {'addr': conf.get ("Systems", obs_system).split(":")[O],
'port' : int(conf.get ("Systems", obs system).split(":")[1])
}

return res

config_wizard.py

#! /usr/bin/env python

Search the bof PID.

eg usage:

import os
import datetime, time

tempfile = "config.temp"
rx_names ['"LOFAR antennas', 'NS receivers', 'EW channels']
rx name [['2B', '"IN-1-3', "4E'],
['3a', 'IN-1-4', '5E'],
['1B', 'IN-1-1', '2E'],
['2a', 'IN-1-2', '3E'],
['4B', '2N—1—3', ll]’
[V5Av, V2N_l_4l, ll],
['3B', '2N-1-1"', '
["4A', '2N-1-2', '
['6B', '3N-1-3', '
[*7a', '3N-1-4', '
['5B', '3N-1-1', '
['6A', '3N-1-2', '
['8B', '"4N-1-3', '
['9A', '4N-1-4"', !
['7B', '4N-1-1"', '
['8A', '4N-1-2"', '

’
14
’
14
’
14
’
14

']
']
']
']
']
']
']
']
']
']

]

dataora = datetime.datetime.utcnow ()

calib _date = " (date n/a)"
calib time = " (time n/a)"
calib source = " (source name n/a)"

print "\n#####EHEEFEEEHEF SR H SRR F S SRS\

print "Beamformer Configuration file Wizard"

print "\nPlease follow the instruction...\n"

f = open(tempfile, 'w');

text = "H#HHHFFEHFAHFHEHHERES B A A A SRS A \ 0\ 0"

text += "# Configuration file automatically generated by using\n# the Wizard on "
text += dataora.strftime ("%d/%m/%Y %$H:%M:%S")+" UT"

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

f.write (text)

text = "\n\n# NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS! "
f.write (text)

text = "\n\n# design global parameters "

text += "\n[global] "

text += "\ndec factor = 13 "

text += "\nbee dec factor = 23 "

text += "\n\n# integration for on board data accumulation "
text += "\nintegration = 100334"

f.write (text)

text = "\n\n# Common network parameters"
text += "\nmonitor ip = 3232238346"

text += "\nstorage ip = 3232238347"

text += "\npck length = 160"

text += "\ngbel name = monitor"

text += "\ngbe2 name = storage"

f.write (text)

time.sleep(0.3)

print "+------——-——- e~ + "

print "| 2 [3 | o

print "+----------- o + BEE2 FPGAs"
print "| 1 [4 | o

print "+------——-——- - + \n"

print "[1] BEE FPGA-1 (front - left) "
print "[2] BEE FPGA-2 (rear - left) "
print "[3] BEE FPGA-3 (rear - right) "
print "[4] BEE FPGA-4 (front - right) "
print "\nWhich BEE2 FPGA are you going to use [1/2/3/4]12 ",

branch raw_input ()
if branch == '1"':
text = "\n\n# Parameters for the FPGAl system"

text += "\nmonitor port = 61003"
text += "\nstorage port = 61004"
text += "\ngbel filename = gbe fpgal monitor.conf"
text += "\ngbe2 filename = gbe fpgal storage.conf"

if branch == '2':
text = "\n\n# Parameters for the FPGA2 system"
text += "\nmonitor port = 62003"
text += "\nstorage port = 62004"
text += "\ngbel filename = gbe fpga2 monitor.conf"
text += "\ngbe2 filename = gbe fpga2 storage.conf"

if branch == '3':
text = "\n\n# Parameters for the FPGA3 system"
text += "\nmonitor port = 63003"
text += "\nstorage port = 63004"
text += "\ngbel filename = gbe fpga3 monitor.conf"
text += "\ngbe2 filename = gbe fpga3 storage.conf"

if branch == '4"':
text = "\n\n# Parameters for the FPGA4 system"

R A A T A T,

Python scripts
Control

text += "\nmonitor port = 64003"
text += "\nstorage port = 64004"
text += "\ngbel filename = gbe fpga4 monitor.conf"
text += "\ngbe2 filename = gbe fpga4 storage.conf"

f.write (text)

print "\n[1l] Fix 16.11"
print "[2] Fix 16.12"
print "Which data cast are you going to use [1/2]? ",

datacast = raw_input ()
if datacast == '1l':
text = "\n# Data cast 16.11"
text += "\ndata format = 1"
else:
text = "\n# Data cast 16.12"

text += "\ndata format = 0"
f.write (text)

text = "\n[main fpga]"
if branch == '1"':
text += "\nserver = beecool:61001"
else:
if branch == '2"':
text += "\nserver = beecool:62001"
else:
if branch == '3':
text += "\nserver = beecool:63001"
else:
if branch == '4"':
text += "\nserver = beecool:64001"
f.write (text)

print "\n"
i=0
while i<3:
print "["+str(i+1)+"] "+rx names[i]
i=1+1
print "\nWhich antennas are connected to the system [1/2/3]2",
rxnames = raw_input ()

names = 1int (rxnames)

if names ==

calib file = "last calib lofar.conf"
else:
if names ==
calib file = "last calib ns.conf"
else:
calib file = "last calib ew.conf"
i=0
try:
for line in open(calib file, 'r').readlines():
if line[:4] == 'data':

calib date = line.split() [2]

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

calib time = line.split() [3]

else:
if line[:6] == 'source':
calib source = line.split () [2]
else:
if not line[0] == '#':
rx name[i] [names-1] = [rx name[i] [names-1] , line.split () [2]]
i=i+1
except:
pass
print "\nLastest phase calibrations have Dbeen done \non "+calib date+" at

"+calib_ time+" using radiosource "+calib source+"\n"

confermi = 'n'
while not confermi == '0':
if not confermi == 'n':
print "\nThe \""+rx name[int (confermi)-1] [names-1][0]+"\" was set to
\""+rx name[int (confermi)-1] [names-1][1]+"\", type the new value: ",
rx name [int (confermi)-1] [names-1] [1] = raw_input ()

print "\nThe value for \""+rx name[int (confermi)-1][names-1][0]+"\" has
been changed to \""+rx name[int (confermi)-1] [names-1] [1]+"\"\n\n"

i=0
while i<16:
print "["+str(i+1l)+"]\t"+ rx name[1i] [names-1][0] +" = "t
rx name[i] [names-1] [1]
i = i+l
if ((i>3) and (names == 3)):
i=16
if rxnames == 'l':
print "\n\"none\" means antenna off"
print "\nEdit an antenna by typing the index in the brackets\n or
type zero [0] to confirm the configuration: ",
else:
if rxnames == '2"':
print "\n\"none\" means receiver off"
print "\nEdit a receiver by typing the index in the brackets\n or
type zero [0] to confirm the configuration: ",
else:
print "\n\"none\" means channel off"
print "\nEdit a channel by typing the index in the brackets\n or
type zero [0] to confirm the configuration: ",
confermi = raw_input ()
i=0
text = "\n#Phase shift in degrees for each single antenna\n#none: mute antenna"
f.write (text)
text = ""
while i<16:
text += "\nd"+str(i)+" = "+rx name[i] [names-1][1]+" # "+rx name[i] [names-
1110]
i =i+l

f.write (text)

text = "\n###HHFEFHHES AR A FE AR A A AR AR A A A A A AR AR A A AR A F A FHHHE \n"
f.write (text)

Python scripts
Control

f.close()

print "\n\nThe configuration file is ready to be saved."
print "\n\nDo you want to check before to save [y/n]? ",

confermi = raw input ()
if confermi == 'y':
for line in open("config.temp",'r').readlines():

print line,

if branch == '1':
print "\n\nDo you want to save as fpgal.conf [y/n]? ",
confermi = raw_ input ()
if confermi == 'y':

os.system("mv config.temp fpgal.conf")
else:
print "\n\nSave aborted. You can still find these settings 1in the
temporary file config.temp\n"

if branch == '2':
print "\n\nDo you want to save as fpga2.conf [y/n]? ",
confermi = raw input ()
if confermi == 'y':

os.system("mv config.temp fpga2.conf")
else:
print "\n\nSave aborted. You can still find these settings 1in the
temporary file config.temp\n"

if branch == '3':
print "\n\nDo you want to save as fpga3.conf [y/n]? ",
confermi = raw input ()
if confermi == 'y':

os.system("mv config.temp fpga3.conf")
else:
print "\n\nSave aborted. You can still find these settings 1in the
temporary file config.temp\n"

if branch == '4':
print "\n\nDo you want to save as fpga4.conf [y/n]? ",
confermi = raw input ()
if confermi == 'y':
os.system("mv config.temp fpgad.conf")
else:

print "\n\nSave aborted. You can still find these settings 1in the
temporary file config.temp\n"

sdeb_init.py
#! /usr/bin/env python

Script for initialising Space Debris beamformer.

eg usage: ./sdeb init.py 1 configfile.conf

#STD imports
import sys, os, time, math
from socket import *

#Project imports
#import lofarconf
import pack sdeb pars conf

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

import dataconversion
import pack sdeb pars systems

def get write func(addr, port):

def write func(line):
sock = socket (AF INET, SOCK STREAM)
sock.connect ((addr, int (port)))
sock.send(line + "\n")
res = sock.recv(1024)
sock.close ()
return res.strip()

return write func

def write addr(val, addr, client):
client ("write int addr %i"%(addr,))
#time.sleep (0.5)
client ("write int data %i"%(val,))
#time.sleep(0.5)
client ("write int cmd 1")
#time.sleep(0.5)
client ("write int cmd 0")
#time.sleep(0.5)

def equalize(fpga, dec factor, bee dec factor, integration, client, logger):
conv = dataconversion.get conversion t (8, 7, True)
ibob offset = 2 ** 16
fpga offset = 2 ** 24
for i,e in enumerate (fpgal'equalization']):
if not e is None:

re = dataconversion.real2unsigned (math.cos (math.radians(e)), conv)
im = dataconversion.real2unsigned(math.sin (math.radians(e)), conv)
else:
re = 0
im = 0
logger.info ("Setting (RE %i, IM %i) to: (%i, %i)"%(i, i, re, im))
if 0 <= 1 <= 3:
offset = 0

elif 4 <= 1 <= 7:
offset = ibob offset
elif 8 <= i <= 11:
offset = fpga offset
elif 12 <= <= 15:
offset fpga offset + ibob offset
write addr(re, 2*(i%4) + offset, client)
write addr (im, 2*(i%4) + 1 + offset, client)
logger.info ("Setting decimation factor to %i"%(dec_factor,))
write_addr(dec factor, 8, client)
time.sleep(0.2)
write_addr(dec factor, 8 + fpga offset, client)
time.sleep(0.2)
write_addr(dec factor, 8 + ibob offset, client)
time.sleep(0.2)
write_addr(dec factor, 8 + ibob offset + fpga offset, client)
(0
(
(0
(
(0

-

time.sleep 2)

write addr bee dec_factor, 10, client)

time.sleep 2)

write addr bee dec_factor, 10 + fpga offset, client)
2)

time.sleep

Python scripts

Control

write addr (integration, 9, client)
time.sleep(0.2)
write addr (integration, 9 + fpga offset, client)
time.sleep(0.2)

def log params(logger, client):
1d0 = int(client("read int rx 1ld cnt0"))
dv0 = int(client("read int rx cntQ"))
pck = int(client("read int pck cnt"))
msg = " ".join([str(1d0), str(dv0), str(pck)l])
logger.info (msg)

if name == "' main_ ':

from optparse import OptionParser
import datetime

import os

import logging

import logging.handlers

p = OptionParser ()

p.set usage('sdeb init.py [options] CONFIG FILE')

p.set description(doc)

p.add option('-r', '--master reset', dest="'reset', action='store false',

default=True,

help="'If set does not send a Master Reset signal before init')
p.add option('-e', dest='eq', action='store false',6 default=True,
help="'If set skips the equalization process')

p.add option('-s', '--start time', dest='start time', default='now',
help='set the start time as dd mm YYYY HH:MM:SS')
p.add option('-1', dest='log', action='store true', default=False,

help='log data to file')

#H#4###4 #4444 PARSING OPTIONS ##########HH#HEHHHHHHHH
opts, args = p.parse args(sys.argv[l:])

if args==[]:
print 'Please specify a configuration file! \nExiting.\n'
exit ()
start time = opts.start time
if start time == "now":
start time = datetime.datetime.now ()
else:
start time = datetime.datetime.strptime(start time, "%d %m %Y $H:%M:%S")

log = opts.log

start cam = datetime.timedelta (seconds=10)
start delta = datetime.timedelta (seconds=1)

#Init logging
if log:
if not os.path.exists("log"):
os.makedirs ("log")
logfile = os.path.join("log", "sdeb init.log")
if os.path.exists (logfile):
os.remove (logfile)
logger = logging.getLogger ("sdeb logger")

N R A A A NN,

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

logger.setlLevel (logging.DEBUG)
ch = logging.StreamHandler ()
ch.setLevel (logging.DEBUG)

ch formatter = logging.Formatter ("% (asctime)s - % (message)s")
ch.setFormatter (ch formatter)
fh = logging.handlers.RotatingFileHandler (logfile, maxBytes=10485760,

backupCount=5)

fh.setLevel (logging.DEBRUG)

fh formatter = logging.Formatter ("% (asctime)s - % (levelname) s -
% (message)s")

fh.setFormatter (fh formatter)

logger.addHandler (ch)

logger.addHandler (fh)

$H44 4444444 PARSING CONFIGURATION FILE #######4##444444
if log:

logger-lnfo ("***")

logger.info ("MFFFFAALLL XX KK KKK INITIALIZATION PROCESS
AXXXKXKKXKKXKKXKKXKKK XXM

logger-lnfo ("***")

logger.info("parsing configuration file " + args[0])
conf = pack sdeb pars conf.parse settings(args[0])
fpga = conf['main fpga']
client = get write func(fpgal['server']['addr'], fpgal['server']['port'])

#HH4###4#4H INIT SYSTEM #######44
if log:

logger.info("Initializing the Space Debris system")
if opts.reset:

if log:

logger.info ("Sending Master Reset to Bee2 and IBOBs")

client ("write int mrst 0")

time.sleep(0.1)

client ("write int mrst 1")

time.sleep(0.1)

client ("write int mrst 0")

time.sleep(0.1)

if opts.eq:
if log:
logger.info ("Setting equalization on main fpga")
equalize (fpga, conf['dec factor'], conf['bee dec factor'],

conf['integration'], client, logger)
client ("write int cmd 0O")

if conf['data format'] ==
logger.info ("Setting Data Format to 16.12")
else:
logger.info ("Setting Data Format to 16.11")
client ("write int data format "+str(conf['data format']))
time.sleep(0.1)

logger.info ("Setting Packet Length to "+str(conf['pck length']))
client ("write int pck length "+str(conf['pck length']))
time.sleep(0.1)

ipconv = str(int((conf['monitor ip'] & 255*256*256*256) >> 24))

R A A T A T,

Python scripts
Control

ipconv += "."+str(int ((conf['monitor ip'] & 255*256*256) >> 16))

ipconv += "."+str(int ((conf['monitor ip'] & 255*256) >> 8))

ipconv += "."+str (int (conf['monitor ip'] & 255))

logger.info("Setting Monitor IP to "+ipconv+" ("+str(conf['monitor ip']l)+")")

client ("write int monitor ip "+str(conf['monitor ip']))
time.sleep(0.1)

logger.info("Setting Monitor Port to "+str(conf['monitor port']))
client ("write int monitor port "+str(conf['monitor port']))
time.sleep(0.1)

ipconv = str(int((conf['storage ip'] & 255*256*256*256) >> 24))

(
ipconv += "."+str(int ((conf['storage ip'] & 255*%256*256) >> 16))
ipconv += "."+str(int ((conf['storage ip'] & 255*256) >> 8))
ipconv += "."+str (int (conf['storage ip'] & 255))
logger.info("Setting Storage IP to "+ipconv+" ("+str(conf['storage ip'])+")")

client ("write int storage ip "+str(conf['storage ip']))
time.sleep(0.1)

logger.info("Setting Storage Port to "+str(conf['storage port']))
client ("write int storage port "+str(conf['storage port']))
time.sleep(0.1)

logger.info("Starting 10GbE interface: "+str(conf['gbel name']))

client ("start gbe "+str(conf['gbel filename'])+" "+str(conf['gbel name']))
logger.info("Starting 10GbE interface: "+str(conf['gbe2 name']))
client ("start gbe "+str(conf['gbe2 filename'])+" "+str(conf['gbe2 name']))

######4## TIME UPDATE ####HFHFHFFHFH

logger.info ("Performing time update for sync...")

while datetime.datetime.now () .microsecond > 100000:
time.sleep(0.1)

t now=datetime.datetime.utcnow ()

t zero = datetime.datetime.strptime("1/1/1970 00:00:00","%d/%m/%Y %H:%M:%S")
t delta = t now - t zero

t stamp now = t delta.days* (60*60*24) + t delta.seconds

logger.info ("Sending: "+datetime.datetime.strftime (t now, "$Y/%Sm/%d

$H:%M:%8")+" UT (timestamp: "+str(t stamp now)+")")
client ("write_int time update "+str (t_stamp_now))
time.sleep(0.1)

while datetime.datetime.now () .microsecond > 100000:
time.sleep(0.1)
client ("write int cmd 4") # cmd Read Ibob Localtime (UT)
time.sleep(0.1)
client ("write int cmd 0O")
iboblocaltime = int(client ("read int last rx hidata"))
logger.info ("Received:
"t+datetime.datetime.strftime (datetime.datetime.utcfromtimestamp (iboblocaltime),
"$Y/%m/%d $H:%M:%S")+" UT (timestamp: "+str (iboblocaltime)+")")
if iboblocaltime == (t stamp now+l):
logger.info ("Time updated successfully")
else:
logger.info ("ERROR: Time NOT updated!!!")

#logger.info ("logging order:")
#logger.info("1d0 dv0 pck cnt")

#1d0 = int(client("read int rx 1d cnt0"))
#dv0 = int (client ("read int rx cntO"))

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

#pck = int (client ("read int pck cnt"))
#fmsg = " ".join([str(1d0), str(dv0), str(pck)])
#logger.info (msqg)

print "\nInitialization Process Successfully Completed!\n"

sched/3C123_fpgal.conf

[Obs]

System = fpgal

Start time = 2012/11/01 00:50:00
Stop_time = 2012/11/01 01:30:00
Target = 3C123 1RX

sdeb _run.py

#! /usr/bin/env python

Script to load the observation parameters.

eg usage: ./sdeb run.py -1 observable.conf

#STD imports
import sys, os, time, math
from socket import *

#Project imports

import pack sdeb pars obs
import dataconversion
import pack sdeb pars systems

def get write func(addr, port):

def write func(line):
sock = socket (AF INET, SOCK STREAM)
sock.connect ((addr, int (port)))
sock.send(line + "\n")
res = sock.recv (1024)
sock.close()
return res.strip/()

return write func

if name == "' main ':

from optparse import OptionParser
import datetime

import os

import logging

import logging.handlers

p = OptionParser ()

p.set usage('sdeb run.py [options] CONFIG FILE')

p.set description(doc)

p.add option('-1', dest='log', action='store true', default=False,

Python scripts
Control

help='log data to file')

####fH #4444 PARSING OPTIONS ######### #4444 HHHH44H
opts, args = p.parse args(sys.argv[l:])
log = opts.log

if args==[]:
print 'Please specify a configuration file! \nExiting.\n'
exit ()

#Init logging
if log:
if not os.path.exists("log"):
os.makedirs ("log")
logfile = os.path.join("log", "sdeb run.log")
if os.path.exists(logfile):
os.remove (logfile)
logger = logging.getLogger ("sdeb logger")
logger.setlLevel (logging.DEBUG)
ch = logging.StreamHandler ()
ch.setLevel (logging.DEBUG)

ch formatter = logging.Formatter ("% (asctime)s - % (message)s")
ch.setFormatter (ch formatter)
fh = logging.handlers.RotatingFileHandler (logfile, maxBytes=10485760,

backupCount=5)

fh.setLevel (logging.DEBRUG)

fh formatter = logging.Formatter ("% (asctime) s - % (levelname) s -
% (message)s")

fh.setFormatter (fh formatter)

logger.addHandler (ch)

logger.addHandler (fh)

######4#### PARSING CONFIGURATION FILE #######4###4###4
if log:

logger info ("***")

logger.info ("MHFFFFR XK KK KA A A AL XXX ARM A NEW OBSERVETION
XXX KKKk khx k1)

logger-info ("***")
logger.info ("Parsing configuration file " + args[0])
conf = pack sdeb pars obs.parse settings(args[0])
sysconf -
pack sdeb pars systems.parse settings("systems.conf",conf['System'])

#client = get write func(conf['ip addr'], conf['ip port'])

#beesys = sysconf['server']
client = get write func(sysconf['server']['addr'], sysconf['server']['port'])
if log:

logger.info ("Loading observation parameters...")

t start =
datetime.datetime.strptime (conf['Start time'],"$Y/%Sm/%d_%H:%M:%S")

t stop =
datetime.datetime.strptime (conf['Stop time'],"$Y/%m/%d_SH:%M:%S")

target name = conf['Target']

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

t nok =0

if t start < datetime.datetime.utcnow() :
t nok =1
logger.info ("*** ERROR: Start time "+datetime.datetime.strftime(t start,
"$Y/%m/%d $H:$M:%S")+" UT must be greater ")

logger.info ("*** than now
("+datetime.datetime.strftime (datetime.datetime.utcnow (), "%Y/%m/%d $H:%$M:%S")+"
UT) u)
if £t nok == 0 and t stop < datetime.datetime.utcnow() :
t nok =1

logger.info ("*** ERROR: Stop time "+datetime.datetime.strftime(t stop,
"$Y/%m/%d $H:%M:%S")+" UT must be greater")

logger.info ("*** than now
("+datetime.datetime.strftime (datetime.datetime.utcnow (), "%Y/%m/%d $H:%M:%S")+"
UT) u)
if t nok == 0 and t stop < t_ start:
t nok =1

logger.info ("*** ERROR: Stop time "+datetime.datetime.strftime(t stop,
"$Y/%m/%d $H:%$M:%S")+" UT must be greater ")

logger.info ("*** than Start time "+datetime.datetime.strftime(t start,
"$Y/%m/%d $H:$M:%S")+" UT")

if not t nok:

t zero = datetime.datetime.strptime ("1/1/1970 00:00:00","%d/%m/%Y
SH:$M:%3")

d start = t start - t zero

start = d start.days* (60*60*24) + d start.seconds

d stop = t stop - t zero

stop = d stop.days*(60*60*24) + d stop.seconds

t total = d stop - d start

t_totsec = t_total.days*(60*60*24) + t total.seconds

client ("write int start time "+str(start))

logger.info ("Loaded START time
"+datetime.datetime.strftime (datetime.datetime.utcfromtimestamp (start), "%Y/%m/%d

SH:$M:%$S")+" UT (timestamp: "+str(start)+")")

client ("write int stop time "+str(stop))

logger.info ("Loaded STOP time
"+datetime.datetime.strftime (datetime.datetime.utcfromtimestamp (stop), "SY/%Sm/%d
SH:$M:%S")+" UT (timestamp: "+str(stop)+")")

ARMING IBOB

client ("write int cmd 0")

time.sleep(0.1)

client ("write int cmd 2")

time.sleep(0.1)

client ("write int cmd 0")

time.sleep(0.1)

while (int (client ("read int last rx lodata")) == 0) and

(int (client ("read int last rx oob")) == 2):

client ("write int cmd 0")
time.sleep(0.1)
client("write_int cmd 2")
time.sleep(0.1)
client ("write int cmd 0")

Python scripts
Control

logger.info ("System "+conf['System']+" armed!")

#d volume = int (int (client ("read int integration")) * t totsec * 4)

d volume = int (30000000./299 * t totsec * 4)

unit = ['bytes', 'KB', 'MB', 'GB']

n unit = 0

d volume /= ((int(client("read int pck length"))-1) * 8)

d volume = int(((int(client ("read int pck length"))-1) * 8)*d volume)

volume=d volume

while n unit <= 3 and volume > 1024:
volume /= 1024
n unit +=1

logger.info ("Data expected: about "+str(int(volume))+" "+unit[n unit]+"
("+str(d volume)+" bytes)")

logger.info ("Starting Recording data on
192.167.189.66:"+str (int (sysconf['server'] ['port'])+4))

storage client = get write func("192.167.189.66",
str (int (sysconf['server'] ['port'])+4))

storage_client("record "+str(start)+" "+target name+" "+str(stop)+"

"+str(d volume))
logger.info ("Observation \""+target name+"\" Loaded Successfully!\n")

else:
logger.info ("Observation \""+target name+"\" not loaded!!!")
logger.info ("ARM aborted!\n")

last_calib_ew.conf

data = 14/11/2012 00:00:00
source = 3C123

d0 = +154.70863 # 4E
dl = -1.2245701 # 5E
d2 = +00.0 # 2E

d3 = +55.895791 # 3E
d4 = none #

d5 = none #

dé = none #

d7 = none #

d8 = none #

d9 = none #

dl0 = none #

dll = none #

dl2 = none #

dl3 = none #

dl4 = none #

dl5 = none #
systems.conf
[Systems]

fpgal = beecool:61001

IRA 462/12

A.Mattana, G. Naldi, G. Pupillo

fpga2 = beecool:62001
fpga3 beecool:63001
fpgad = beecool:64001

fpgal.conf

S

#

Configuration file automatically generated by using
the Wizard on 15/11/2012 15:09:48 UT

NO WHITESPACE ALLOWED BETWEEN TEXT DELIMITERS!

design global parameters
[global]

dec factor = 13

bee dec factor = 23

integration for on board data accumulation
integration = 100334

Common network parameters
monitor ip = 3232238346
storage ip = 3232238347

pck length = 160

gbel name = monitor

gbe2 name = storage

Parameters for the FPGAl system
monitor port = 61003

storage port = 61004

gbel filename = gbe fpgal monitor.conf
gbe2 filename = gbe fpgal storage.conf
Data cast 16.11

data format =1

[main fpga]

server = beecool:61001

#Phase shift in degrees for each single antenna
#none: mute antenna

d0 = none # 4E

dl = none # 5E

d2 = +00.0 # 2E

d3 = +55.895791 # 3E

d4 = none #
d5 = none #
d6é = none #
d7 = none #
d8 = none #
d9 = none #
dl10 = none #
dll = none #
dl2 = none #
dl3 = none #
dl4 = none #
dl5 = none #

FHE R

Python scripts
Storage

Storage

README.txt

A

1. First of all connect via ssh or open a terminal window
on 192.167.189.66 (batman), login as oper

Last login: Sat Nov 10 14:03:31 2012 from bee2desktop
* Have a lot of fun...

2. Storage scripts are in "/media/data/sdeb"
* oper@batman:~> cd /media/data/sdeb
3. Depending on the branch launch 'fpgal/2/3/4’ recorder server

* oper@batman:/media/data/sdeb> ./fpgal recorder server.py
* server listening on port: 64005

4. Server 1is listening, when observing you should see this:
Command received: record 1352725860 scan hp 1352725920 24080232
E i i

Executing: ./record fpgal.py =-o scan hp -s 2012/11/12 13:11:00 -t
2012/11/12 13:12:00 -e 24080232

A A A

*

*

*

*

*

1

*

*

*

* 317 14:10:28 - INFO: Running with options:
* 317 14:10:28 - INFO: port: 64004

* 317 14:10:28 - INFO: pkg length: 8000
* 317 14:10:28 - INFO: fmt: >Q

* 317 14:10:28 - INFO: target name: scan hp

* 317 _14:10:28 - INFO: start time: 2012/11/12 13:11:00

* 317 14:10:28 - INFO: stop time: 2012/11/12 13:12:00

* 317 14:10:28 - INFO: output filename: data/20121112 131100 EW scan hp.dat
* 317 14:10:59 - INFO: server listening

* 317 14:11:00 - INFO: recording...

* 317 14:12:00 - INFO: closing communication

* 317 _14:12:00 - INFO: received up to package: 18931

* 317 14:12:00 - INFO: closing recorder

*

*

BREFFE SRS SESSSSSRSS S S S S S S

fpgal_recorder_server.py

#!/usr/bin/env python

import SocketServer

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

import socket

import struct

import datetime

import time

import logging

import logging.handlers
import os

class CommandException (Exception):
def init (self, msg):
Exception. init (self, msg)

class SdebTCPHandler (SocketServer.StreamRequestHandler) :
def handle (self):

self.data = self.rfile.readline () .strip()

print "Command received: " + self.data

args = self.data.split ()

try:
res = self.server.execute (args)
self.wfile.write(str(res))

except CommandException, ce:
self.wfile.write(ce.args[0])

class SdebTCPServer (SocketServer.TCPServer) :
def init (self, addr):
SocketServer.TCPServer. init (self, addr, SdebTCPHandler)

self.rec = 0

#self.base path = "/proc/%s/hw/ioreg/"% (pid,)
#self.devs = os.listdir(self.base path)
self.commands = {

"record": self.record,
"abort": self.abort,

}
def record(self, t start, target, t stop, expsize):

self.rec =1

print "\n###\n"

cmd = ./record fpgal.py -0 "+target+" -s
"+datetime.datetime.strftime (datetime.datetime.utcfromtimestamp (int (t_ start)),
"SY/% m/od SH:3M:%38") +" -t

"tdatetime. datetime.strftime (datetime.datetime.utcfromtimestamp (int (t stop)),
"SY/%m/%d_SH:%M:%S")

cmd += " -e "

cmd += expsize

print "Executing: "+cmd

#a = os.system(cmd+"&")

os.system(cmd+"&")

#os.system (cmd)

print "\n#####H#HFHFEHER AR A AR AR AR AR AR AR AR AR A ER AR EEE S\

#return a

def abort(self, target):
print "End of recording: "+target
self.rec = 0
return 0

def execute(self, args):
if not self.commands.has key(args[0]) :
raise CommandException ("Command %s not found."$%(args[0],))

Python scripts

Storage
if len(args) > 1:
try:
res = self.commands[args[0]] (* (args[l:]))
except TypeError, te:
raise CommandException(te.args[0])
else:
res = self.commands[args[0]] ()
return res
if name ==" main ":

from optparse import OptionParser
import sys

#server = socket.socket (socket.AF INET, socket.SOCK DGRAM)
server = SdebTCPServer (("", 61005))
try:
print "server listening on port: " + str(61005)
server.serve forever ()
except KeyboardInterrupt:
print "closing communication"
del (server)
sys.exit (0)

record _fpgal.py

#!/usr/bin/env python

import SocketServer
import socket

import struct

import datetime

import time

import logging

import logging.handlers

#Setting up logging

log filename = "log/dataserver.log"
logger = logging.getLogger ('DatalLogger’')
logger.setLevel (logging.INFO)

console log = logging.StreamHandler ()

file log = logging.handlers.RotatingFileHandler (log filename, maxBytes=8388608,
backupCount=5)
formatter = logging.Formatter ("% (asctime)s - % (levelname) s: % (message)s",

"3 SH:%M:%S")

console log.setFormatter (formatter)
file log.setFormatter (formatter)
logger.addHandler (console 1o0g)
logger.addHandler (file log)

def unscram data(data, 1):
data len = len(data)
for i in xrange(data len // 1):
yield data[i*1:1i*1+1]

class LofarDataUDPHandler (SocketServer.DatagramRequestHandler) :
def handle(self):

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

while server.acquiring:
buf = self.rfile.read(self.server.pkg len)
self.handle pkg (buf)

def handle pkg(self, pkg):

count = struct.unpack(self.server.fmt, pkgl[:8]) [0]
if count != self.server.count + 1:
logger.error ("jumping from packet " + str(self.server.count) + " to "

+ str (count))
self.server.count = count
self.server.outfile.write (pkg([8:1])

class LofarDataUDPServer (SocketServer.UDPServer) :

def __init (self, addr=("localhost", 9999), fmt=">L",
outfilename="data/lofar.dat", pkg len=20):
self.outfile = open(outfilename, "wb")

self.fmt = fmt

self.pkg len = pkg len

self.count = 0

self.acquiring = True

SocketServer.UDPServer. init (self, addr, LofarDataUDPHandler)
if name ==" main ":
from optparse import OptionParser
import sys

#command line parsing
op = OptionParser ()

op.add option("-p", "--port", type="int", dest="port", default=61004)

op.add_option("—f", "——fmt", dest="fmt", default=">Q")

op.add option("-o", "--outfile", dest="outfile", default="", help="target
name")

op.add option("-e", "--expsize", type="int", dest="expsize", default=0,
help="expected size in bytes")

op.add option("-k", "--pkg len", type="int", dest="pkg len", default=1000,
help="gets multiplied by 8")

op.add option("-s", "--start time", dest="start", default="now",
help="YYYY/MM/DD HH:MM:SS")

op.add option("-t", "--stop time", dest="stop", default="never",
help="YYYY/MM/DD HH:MM:SS") B

op.add option("-n", "--no record", dest="no_rec", action="store true",
default=False, help="don\'t write data to disk")

opts, args = op.parse args(sys.argv[l:])

port = opts.port

fmt = opts.fmt

pkg len = opts.pkg len * 8
start = opts.start

stop = opts.stop

rec = not opts.no_rec
expectedsize = opts.expsize
outfile = opts.outfile

#file log.doRollover ()
logger.info ("Running with options:")

logger.info ("port: " + str(port))
logger.info ("pkg length: " + str(pkg len))
logger.info("fmt: " + str(fmt))
logger.info("target name: " + outfile)

Python scripts
Storage

logger.info ("start time: " + start)
logger.info("stop time: " + stop)
#logger.info ("recording: " + str(rec))
if outfile != "":

outfile = " " + outfile

o©

t zero = datetime.datetime.strptime("1/1/1970 00:00:00","%d/%m/%Y %H:%M:%S")
if start == "now":
start time = datetime.datetime.utcnow ()
else:
start time = datetime.datetime.strptime(start, "%Y/%m/%d $H:%M:%S")
d start = start time - t zero
lstart = datetime.datetime.utcfromtimestamp (d start.days* (60*60*24) +
d start.seconds -1)

if stop == "never":
delta = datetime.timedelta (days=365)
stop time = start time + delta
else:
stop time = datetime.datetime.strptime(stop, "%Y/%m/%d %H:%M:%S")
d stop = stop time - t zero
lstop = datetime.datetime.utcfromtimestamp (d stop.days* (60*60*24) +
d stop.seconds +1)

#logger.info ("start time converted to: " + str(start))

#logger.info ("stop time converted to: " + str(stop))

#server = LofarDataUDPServer (addr=("", port), outfilename=outfile, fmt=fmt,
pkg len=pkg len)

server = socket.socket (socket.AF INET, socket.SOCK DGRAM)

if rec:

outfilename="data/"+start time.strftime ("$Y%m%d $HIM%S")+" NS"+outfile+".dat"
logger.info ("output filename: "+ outfilename)
out = open(outfilename, "wb")
count = -1

while datetime.datetime.utcnow() < lstart:
time.sleep(0.3)

logger.info ("server listening")
server.bind(("192.168.11.11", port))

while lstop > datetime.datetime.utcnow () and out.tell() < expectedsize:
#print expectedsize, out.tell(),
#if out.tell() < expectedsize:
#print "...rileggo"
buf = server.recv(pkg len)
new count = struct.unpack(fmt, buf[:8]) [0]
if not new count == count + 1:
logger.error ("jumping from " + str(count) + " to " + str(new _count))
if new count ==
logger.info ("recording...")
count = new_count
out.write(buf[8:1)
out.flush()
logger.info("closing communication")

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

logger.info ("received up to package: " + str(count+l))
out.close()

logger.info("closing recorder")

print "\n####FEHEFHFFEHFEREEEREA A A A S F SRS EAEEEEE \ D"

Monitor

README.txt

Plot observation in realtime

Example of usage:
oper@bee?:~/andrea/bin$ python realtimespectra.py -c 1024 -i 100 -p 61003

Help for parameters allowed:
oper@bee2:~/andrea/bin$ python realtimespectra.py —--help
Usage: realtimespectra.py [options]

Options:
-h, --help show this help message and exit
-p PORT, --port=PORT
-k PKG_LEN, --pkg len=PKG_LEN
package length expressed in 64b
-c FFTSIZE, --fftsize=FFTSIZE
number of fft channels
-1 INTEGR, --intgr time=INTEGR
number of integrations
-w WINDOW, --window=WINDOW

type of window, default=no window, possible wvalue:
hamming, hanning, bartlett, kaiser(default shape 10%)

realtimespectra.py

#!/usr/bin/env python
ensure sysctl -w net.core.rmem max=8388608 is set

import socket
import struct
import datetime
import time

import numpy, sys

import matplotlib
matplotlib.use ('TkAgg')

from matplotlib import pylab

cnt = 0

def exit fail():
print 'ERROR: '
try:
print 'Programma terminato’

Python scripts
Monitor

except: pass
raise
exit ()

def exit clean():
try:
print 'Programma terminato’
except: pass
exit ()

def safe recv (socket, size) :
global cnt
msg = T
while len(msg) < (size):
chunk = socket.recv(size-len (msg)+8);
if chunk == "'"':
raise RuntimeError, "socket connection broken"
msg = msg + chunk([8:]
return msg

def cplxswaporder (n) :

a = numpy.zeros (len(n) /2, 'complex')

i=0

q=20

while g < len(n):
#al[i]l=complex (n[g+2],n[g+3])
#a[i+l]=complex (n[qg],n[g+l])
al[i]l=complex (n[ql,nl[qg+l])
al[i+l]=complex (n[g+2],n[g+3])
i = i+2
q = gt4

return a

def applywindow (data,window) :

if window == 'hamming':

data *= numpy.hamming (len (data))
elif window == 'hanning':

data *= numpy.hanning(len (data))
elif window == 'bartlett':

data *= numpy.bartlett (len(data))
elif window == 'kaiser':

data *= numpy.kaiser (len(data),len(data)/10)
return data

Read header (64bit) and

the first 1024 pair re-im

of samples (blocking, re 16b, im 1l6b)

def get spectrum(socket,pkg len, fftsize):
#rawdatareal = numpy.zeros (fftsize,dtype=numpy.float64)
buf = safe recv(socket, fftsize*4)
fmt='<"+str(fftsize*2)+'h'
vettore = struct.unpack(fmt, buf)
rawdata = cplxswaporder (vettore)
if window != '':

rawdata = applywindow (rawdata,window)
fftdata = numpy.fft.fft(rawdata)
#rawdatareal = numpy.array([c.real ** 2 + c.imag ** 2 for c in rawdatal)

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

#fftdata = numpy.fft.fft (rawdatareal)

fftdata = numpy.array([c.real ** 2 + c.imag ** 2 for c in fftdata])

#fftdata = numpy.fft.helper.fftshift (fftdata) #Frequency reordering, funziona
anche con fft complesse?!

#fftdata = 10*numpy.loglO (fftdata)

return fftdata

if name ==" main ":
from optparse import OptionParser
import sys

#command line parsing
op = OptionParser ()

op.add option("-p", "--port", type="int", dest="port", default=64003)

#op.add option("-f", "--fmt", dest="fmt", default="<Q")

op.add option("-k", "--pkg len", type="int", dest="pkg len", default=20,
help="package length expressed in 64b")

op.add option("-c", "--fftsize", type="int", dest="fftsize", default=1024,
help="number of fft channels")

op.add option("-i", "--intgr time", type="int", dest="integr", default=100,
help="number of integrations")

op.add option("-w", "--window", dest="window", default='', help="type of
window, default=no window, possible value: hamming, hanning, bartlett,
kaiser (default shape 10%)")

#op.add option("-t", "--stop_time", dest="stop", default="never",
help="HH:MM:SS dd/mm/yyyy")

opts, args = op.parse args(sys.argv[l:])

instrument port = opts.port

fmt = opts.fmt
pkg len = opts.pkg len*8
fftsize = opts.fftsize

integration = opts.integr
window = opts.window

try:
pylab.ion ()

#UDP Socket stuff

instrument addr = '192.168.11.10"; #'127.0.0.1"

s = socket.socket (socket.AF INET, socket.SOCK DGRAM) ;

s.setsockopt (socket.SOL SOCKET, socket.SO RCVBUF, 1048576*8)

print 'Listening on port ',instrument port, ' (',instrument addr,')'
s.bind((instrument addr, instrument port));

try:
print 'Plot started'
pylab.figure ()

if instrument port == 64003:
rtelescope = 'EW'

if instrument port == 61003:
rtelescope = 'NS'

while 1:
#continuous_acq()
i=0

R A A T A T,

Python scripts
Monitor

spettri

while

spettro

numpy.zeros (fftsize, dtype=numpy.float6d)
i < integration:
get spectrum(s,pkg len, fftsize)

spettri += spettro

i

+=1

matplotlib.pyplot.clf ()

intspettro
numpy.concatenate ((spettri[fftsize/2:],spettri[:fftsize/2]))

pylab.semilogy (intspettro)
pylab.title(rtelescope+'
'"+time.strftime ('%d/sm/%Y %X'))

- FFT (integration of '+str(i)+ ' spectra)

pylab.ylabel ('Power (arbitrary units)')
pylab.grid()
pylab.xlabel ('Channel')
pylab.x1im (0, len (intspettro))
pylab.draw ()
except:
print '\n'

except KeyboardInterrupt:
exit clean()

except:
exit fail()

exit clean()

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Index of Figures

FIG. 1: BISTATIC RADAR CONFIGURATION GEOMETRY. 6
FIG. 2: BLOCK DIAGRAM OF THE IBOB BOARD GENERAL ARCHITECTURE 9
FIG. 3: THE IBOB BOARD, YOU CAN SEE ON THE TOP THE 2 ZDOKS FOR A/D BOARDS, TWO CX4 CONNECTORS BELOW,

JTAG PINS ON THE LEFT, WHILE THE XILINX VIRTEX 2 PRO IS BEHIND THE COOLER 10
FiG. 4: CASPERIADC 10
FIG. 5: A PICTURE OF THE BEE2 BOARD WHOSE PRINCIPAL COMPONENTS ARE POINTED OUT. 11
FIG. 6: BLOCK DIAGRAM OF THE BEE2 BOARD GENERAL ARCHITECTURE 13
FIG. 7: DATA FLOW SCHEME 13
FiG. 8: FuJITsu XG700 12CX4 PoRrTs 10GB SWITCH 14
FIG. 9: OVERALL SCHEME 15
FIG. 10: BASIC CONNECTION SCHEME 15
FIG. 11: 4 PARALLEL BEAMFORMER SYSTEM CONNECTION SCHEME 16
FIG. 12: PICTURE OF THE LOCAL OSCILLATOR SET TO 378 MHZ IN INPUT TO 17
FIG. 13: PICTURE OF THE MAIN BEAMFORMER DIGITAL BACKEND MODULES 17
FIG. 14: MATLAB SIMULINK SCREENSHOT OF THE IBOB PROJECT 18
FIG. 15: IBOB FIRMWARE ARCHITECTURE 19
FIG. 16: DDC SCHEMATIC 19
FIG. 17: DESIGN PARAMETERS OF THE FIR FILTER INSIDE THE DDC BLOCK. 20
FIG. 18: DESIGN PARAMETERS OF THE FIR FILTER SYNTHESIZED IN THE IBOB. 21
FIG. 19: TIME DIAGRAM OF THE TIME UPDATE PROCEDURE 23
FIG. 20: IBOB TIMING REGISTERS 24
FIG. 21: PROPAGATING THE SYNC SIGNAL WITH INTERMEDIATE BLOCK LATENCIES 24
FIG. 22: SIMULATION OF THE IBOB DECIMATOR PERFORMED USING SIMULINK. 25
FIG. 23: BEE2 MATLAB MODEL FILE 26
FIG. 24: BEE2 FIRMWARE ARCHITECTURE 26
FIG. 25: DESIGN PARAMETERS OF THE FIR FILTER SYNTHESIZED IN THE BEE2. 27
FIG. 26: IPS AN MACS TABLE 33
FIG. 27: STATE MACHINE FLOW CHART 36
FIG. 28: A REAL TIME FFT PLOT OBSERVING A DEBRIS IN A BISTATIC RADAR CONFIGURATION 46
FIG. 29: THE DOPPLER SHIFT OF THE DEBRIS ID 18096. ANIMATING THIS PLOT THE PEAK MOVES FROM RIGHT TO LEFT 47
FIG. 30: OMNIDIRECTIONAL ANTENNA 48
FiG.31: HP 8657B 48
FiG. 32: ROHDE&SCHWARZ SMX 49
FIG. 33: THE MAIN WIDGET OF THE IDL SPECTROMETER 49
FIG. 34: OVERPLOTTING FFTS OF THE ENTIRE FILE YOU CAN RECOGNIZE THE FREQUENCIES USED FOR THE TEST. 51

S S S S S S S S

file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855802
file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855803
file:///C:/Users/Giovanni%20Naldi/Desktop/beamf_sdeb_final.docx%23_Toc343855804

Index of Figures

FiG.

FiG.

FiG.
FiG.

FiG.

FiG.

FiG.

FiG.

35: FREQUENCY 407.970KHz SAMPLED USING THE HP 8657B AS CLOCK SAMPLER. THE READ FREQUENCY RESULTS
407.974KHz, 4Hz DIFFERENCE

36: FREQUENCY 407.970KHZ SAMPLED USING THE ROHDE&SCHWARZ SMX AS CLOCK SAMPLER. THE READ
FREQUENCY RESULTS EXACTLY 407.970kHz

37: FFT BINS

38: NORMALIZED E-PLANE POWER PATTERNS CALCULATED FOR A SINGLE E-W RECEIVER (DOTTED BLACK LINE) AND FOR
A SYNTHETIZED BEAM OF 4 RECEIVERS (CONTINUOUS BLUE LINE).

39: TRANSIT OF CYGNUS-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE) AND BY A SYNTHETIZED BEAM
OF 4 RECEIVERS (CONTINUOUS BLUE LINE).

40: TRANSIT OF VIRGO-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE) AND BY A SYNTHETIZED BEAM OF
4 RECEIVERS (CONTINUOUS BLUE LINE).

41: TRANSIT OF TAURUS-A OBSERVED BY A SINGLE E-W RECEIVER (DASHED BLACK LINE), BY A SYNTHETIZED BEAM OF 2
RECEIVERS (DASHED DOTTED RED LINE) AND OF 4 RECEIVERS (CONTINUOUS BLUE LINE)

42: SPECTRUM OF THE ECHO FROM THE TARGET NEXTSAT DETECTED DURING ON 2012 DECEMBER 17 AT
09:01:06.25 UT. THE SPECTRAL WINDOW IS CENTRED AT THE TRANSMITTING FREQUENCY. DUE TO THE
EXTREMELY HIGH SNR OF THE ECHO, THE SIGNAL AMPLITUDE IS PLOTTED IN LOGARITHMIC SCALE.

52

52
53

57

58

58

59

60

IRA 462/12
A.Mattana, G. Naldi, G. Pupillo

Index of Tables

TAB. 1: STRUCTURE OF THE 64 BITS WORD TRANSMITTED OVER XAUI

TAB. 2: UDP PACKET FORMAT ...ettutteeuteesuteesuteesseesusessnseessessnseesssessnsessnsessnseessesssseesssesesssesssssssssesssesessesssessnseesssens

TAB. 3: DATA FIELD IN UDP PACKETS ..uuvttteittteeesiieeesssitetessueteeesiteeesssseeesnsseesssssesessssseessnssessssseesssssseessssesessnseeenns

TAB. 4: OOB LIST FOR IBOB-BEE2 INTERNAL COMMUNICATION PROTOCOL. +.euvveeuvreenieesseeenseessseeesssesssesesssesssesesseesnsens 30
TAB. 5: 10GB ETH INTERFACE CONFIGURATIONSctteteeeuutrereeeeesesauuerteeeesesasussteeeesssasunseaeeesssasasssseeeesssansnseseeesseanann 32
TAB. 62 SERVICE ID LIST 1euttiiieeiieeettesteesteeerteesteesteesabeesbeesabeesbtesabeessbaesabaessbeesabaeebbeenbeeensbesnbeeenasesnsaeensseenses 32
TAB. 7: CHANNEL RESOLUTION AND TIME WINDOW OVER NUMBER OF CHANNELS......eeeerurrreerrreeesrreessnnreeessnneessnneeeenns 50
TAB. 8: DELTA FREQUENCIES OF THE TWO SIGNAL GENERATORS ..ceeeuuveeerauureeessureeeesureresssuseeessseeessseeesssssesessnseeessssseeenns 55
TAB. 9: THE THREE RADIO-SOURCES OBSERVED FOR THE BEAMFORMER TEST....uuvveeeiutieeeenureeesnnreeessnneessnsseeesssnessssseeeenns 56

Acronyms

Acronyms

ADC Analog to Digital Converter

CASPER Collaboration for Astronomy Signal Processing and Electronics Research
cw Continuous Wave

DDC Digital Down Converter

DDS Direct Digital Synthesizer

EDK Embedded Development Kit

E/W East West arm of the Northern Cross radiotelescope
FFT Fast Fourier Transform

FIR Finite Input Response

FPGA Field Programmable Gate Array

IDE Integrated Development Environment

IDL Interactive Data Language

IF Intermediate Frequency

IP Internet Protocol

LEO Low Earth Orbit

LOFAR Low Frequency Array

MAC Media Access Control

MSB Most Significant Bit

N/S North South arm of the Northern Cross radiotelescope
PFB Poliphase Filter Bank

PLL Phase Locked Loop

RF Radio Frequency

ROACH Reconfigurable Open Architecture Computing Hardware
SNR Signal to Noise Ratio

TLE Two Line Elements

USSTRATCOM United States Strategic Command

R TNy

