Titolo

Analisi di spettro su segnali I&Q mediante scheda audio PC (fino 190 KHz)

C. Bortolotti, M. Roma

Rapporto interno IRA 475/13

Indice:

Descrizione del sistema	pagina	4
Demodulazione ed amplificazione segnale I&Q		6
Scheda audio PC		8
Programma "Spectrum Lab"		9
Alcune applicazioni		14
Riferimenti		17
Ringraziamenti		17

Schede tecniche allegate:

- A. Demodulatore I&Q Mini-Circuits MIQA-10DB. Amplificatore Operazionale LMH6702C. Scheda audio PC ASUS XONAR D2/PM

Descrizione del sistema

In questo rapporto interno viene descritto un dispositivo "low cost" per analisi di spettro in bande relativamente strette (max 190 KHz) realizzato con pochi componenti ed utilizzando un normale PC, ma con prestazioni interessanti sia in risoluzione spettrale che velocità di elaborazione e visualizzazione.

Lo schema a blocchi, riportato nella pagina seguente, evidenzia la semplice architettura di tale sistema, che in pratica si riduce ai seguenti componenti:

- Dispositivo demodulatore I&Q con amplificazione del segnale "audio"
- PC dotato di scheda audio con ingresso stereo
- DL4YHF's Amateur radio software: Audio Spectrum Analyzer "**Spectrum Lab**" scaricabile in rete sul sito <u>http://www.qsl.net/dl4yhf/spectra1.html</u>

Demodulazione ed amplificazione segnale I&Q

Il progetto si basa sulla realizzazione di un ricevitore a conversione diretta.

La conversione diretta in banda base risulta circuitalmente molto semplice richiedendo un numero esiguo di componenti per la sua realizzazione, inoltre si ottengono migliori caratteristiche se confrontate con un ricevitore di tipo supereterodina.

Si è individuato come elemento cardine per la realizzazione di questo ricevitore il componente MIQA-10D della Mini-Circuits, frequenza RF/OL 9-11 MHz, che integra al suo interno i 4 elementi costituenti il vero demodulatore I&Q che sono:

- divisore per 2 a 0° di sfasamento
- divisore per 2 con le uscite sfasate tra loro di 90°
- mixer che ha come ingressi RF e LO non sfasato
- mixer che ha come ingressi RF e LO sfasato di 90°

Al demodulatore vengono applicati rispettivamente sul pin 8 e sul pin 1 i segnali d'ingresso RF e OL.

Il segnale RF viene splittato dal divisore per 2 a 0° di sfasamento e le 2 uscite divengono gli ingressi RF dei successivi 2 mixer.

Il segnale dell'OL viene splittato dal secondo divisore a 90°, l'uscita a 0° di sfasamento arriva all'ingresso OL del mixer che così effettua la conversione della parte reale I in uscita sul pin 7, mentre l'altra uscita diviene l'ingresso OL del secondo mixer per la conversione della parte immaginaria Q in uscita sul pin 4.

Le due uscite I e Q vengono amplificate a livelli ottimali (gain = 8) dai due moduli operazionali LMH6702 che seguono, questi sono stati scelti con una banda passante molto larga al fine di non introdurre sfasamenti spuri che avrebbero deteriorato l'ortogonalità tra parte reale e parte immaginaria.

Il circuito sopra descritto è stato realizzato su una schedina in vetronite spessore 1,2 mm, lavorata in dual-layer mediante apposita fresina.

Il tutto è contenuto in una piccola scatola metallica connettorizzata SMA, comprensiva di n.2 regolatori di tensione +/- 5V per incrementarne l'isolamento.

I segnali I e Q sono quindi inviati mediante cavo schermato agli ingressi Left e Right della scheda audio descritta in seguito ed utilizzata come digitalizzatore.

Il circuito sopra descritto opera nella banda 9-11 MHz, tale banda può essere variata impiegando altri tipi di demodulatore.

Scheda audio PC

Spectrum Lab è il programma che viene utilizzato per l'analisi dei dati, questo software usa come digitalizzatore (ADC) la scheda audio del PC, a seguito dei primi test effettuati abbiamo riscontrato la necessità di dotarci di una scheda audio più performante dotata di banda passante più estesa di quella standard montata internamente nei comuni computer (24-48 KHz).

La scelta è caduta su una scheda connettorizzata PCI della ditta Asus modello Xonar D2/PM che oltre ad avere una banda passante di 96KHz per canale (massimo S.R. 192kHz) possiede anche un'ottima dinamica grazie all' ADC Cirrus Logic CS5381*1 di cui è dotata (24 bit / 120dB SNR), ulteriore caratteristica ricercata per il nostro utilizzo.

Le caratteristiche complete della scheda audio sono riportate nell'allegato C.

Programma "Spectrum Lab"

Il software utilizzato è prodotto da DL4YHF (Wolfgang "Wolf" Büscher) e come detto si tratta di un Audio Spectrum Analyzer chiamato "**Spectrum Lab**" che realizza l'FFT del segnale. Questo programma può essere utilizzato in diverse configurazioni e dispone di molti ausili, anche relativamente complessi.

Il segnale da analizzare opportunamente amplificato viene acquisito tramite la scheda audio del PC e, in funzione della configurazione di utilizzo, deve essere fornito mono (audio semplice) o stereo (segnale I&Q).

Nel nostro caso, come detto in precedenza, abbiamo adottato la configurazione I&Q in quanto questa tecnica rende più facile la conversione di segnali IF in banda base, mantenendo una buona reiezione di immagine tra USB ed LSB. Inoltre, a parità di frequenza di campionamento della scheda audio utilizzata, questa tecnica permette l'analisi di una banda con larghezza doppia.

Il software è scaricabile dal sito <u>http://www.qsl.net/dl4yhf/spectra1.html</u> ed una volta installato necessità di alcune impostazioni preliminari. Seguono n.4 immagini (relative al menù a tendina *Option*) che riportano i principali settaggi da noi adottati per l'utilizzo di Spectrum Lab in configurazione I&Q:

in questo caso Sample Rate = 48000 e FFT size = 8192 per un Noise BW eq. di 8,7 Hz.

SpecLab Configuration and Display Control 🛛 🛛 🖄							
TRX Control Memory	Filenames	Wave F	iles	Marke	ers	System	Freq-Resp
Spectrum (1) (2) (pectrum (1) (2) (3) (4) Radio DF FFT Audio I/O AD/DA Serve					AD/DA Server	
Audio Input Device	Audio Pro Soundca decima Sample R	ocessing Ird Sample R ate input SR ate Calibratio	ate 4 by 1 n Tabl	8000 e [Hz]	•	Sampler Correct I Displaye	ate Calibrator Frequency ed Frequency
Audio Output Device	Nominal	Input calib	Outp	ut calib			
1 ASUS Xonar D2 Audio 👻	32000	32000.000	3200	0.000		Calibra	te Input S.R.
4 drivers found Ctrl other destinations >>	44100 44100.000 44100.000 48000 48000.000 48000.000				e Output S.R.		
16 ✓ bits/sample ✓ Stereo Processing nominal: 11025 Hz							
I/Q input adjustment Resampling quality medium ? about SR calib.							
Shown: Settings for Analyser 1, channel 1 (L)							

sottomenù Audio I/O

SpecLab Confi	guration an	d Displa	iy Contro	ol		×
TRX Control Me	emory Filena	ames 🛛 V	Vave Files	Markers	System	Freq-Resp
Spectrum (1) (2	2)(3)	(4)	Radio DF	FFT	Audio I/O	AD/DA Server
FFT properties, frequency resolution FFT Type (same for all channels) Decimate input by (divisor)1 Image: Complex, with separate I/Q inputs Image: Complex, with separate Image: Complex, with sepa						
 ✓ use anti-alias filter for decimation ✓ same FFT params for all analyser channels Effect of FFT settings with fs= 48.0000 kHz: Width of one FFT-bin: 5.85938 Hz Equiv. noise bandwidth: 8.78906 Hz Max freq range: -24.0000 kHz 24.0000 kHz FFT window time: 0.171 s Overlap from scroll interval: 87.5 % 						
			Show	n: Settings fo	or Analyser 1	, channel 1 (L)

sottomenù FFT

Sottomenù Spectrum (1)

SpecLab Configuration and Display Control 🛛 🛛 🛛						
TRX Control Memory Filenames Wave Files Markers System Freq-Resp						
Spectrum (1)(2)(3)(4) Radio DF FFT Audio I/O AD/DA Server						
Vertical Frequency Axis ✓ Amplitude Grid (dB or %) Show : both / Plot right ▼ double-width waterfall lines one pixel per FFT bin ✓ + amplitude bar optimum waterfall average multi strip WF 100 pix/strip Maths: none ▼ triggered Spectrum more non scrolling WF Maths: none ▼ peak detecting cursor peak holding graph, spectrum graph area (pix) 100 emphasize MIN+MAX values hold time (s): 15 Channels / Connections						
Waterfall Scroll Interval Waterfall Time Grid 21.33 ms sec interval automatic 21.33 ms sec minutes ✓ automatic: 87.5 ▼ % overlap Style small ticks ▼ user-defined time label format : ✓ smooth scroll, high CPU load Style small ticks ▼ YYYY-MM-DD hh:mm:ss						
More spectrum display settings on the next >> and on the "Radio Direction Finder" tab >>>						
Shown: Settings for Analyser 1, channel 1 (L) Apply Close Help						

SpecLab Configuration and Display C	control
TRX Control Memory Filenames Wave Spectrum (1) (2) (3) (4) Rac	Files Markers System Freq-Resp lioDF FFT AudioI/O AD/DA Server
Amplitude Range & Spectrogram Options Range -85 45 Offset 0.0 -> 0 dBm (expression) (calculated) individual range/contrast/brightness per chnl Visual AGC off Ref: -100 dB Amplitude bar (in spectrogram) ✓ visible ✓ with scale size (pix): 30 Show channels from watch-window: display range: 100 % of full ADC swing	Options for the Frequency Axis ✓ Show grid in spectrum graph Show grid in waterfall display ✓ use dotted grid in waterfall Split frequency scale Logarithmic LSB mirror place freq scale on "other" side Show Radio Station List (frequencies) Frequency scale style Ruler Fixed size (0=auto) 0 pixel Special display options
See also: <u>amplitude calibration</u>	show labels like Ch1, Ch2, Correlation
	Shown: Settings for Analyser 1, channel 1 (L)
v	Apply Close ? Help

Sottomenù Spectrum (2)

Nella pagina che segue viene riportata l'immagine di una "schermata" tipica del programma "SpecLab" che oltre a visualizzare lo spettro istantaneo del segnale acquisito ne memorizza l'andamento (colore in funzione dell'ampiezza) con un grafico tipo cascata (waterfall). La velocità di scorrimento di questo grafico è funzione del numero di FFT, della S.R. (e dal grado di overlap) impostati:

- Sample Rate da 5512 a 192000
- FFT da 32 a 524288
- velocità massima della "cascata" fino a 200 linee al Sec.

Nell'immagine, oltre allo 0Hz, sono visibili alcuni segnali attorno a –2 e +22 KHz.

Il software permette anche di visualizzare lo spettro relativo alla media di un certo numero di FFT (average), di abilitare una seconda traccia che memorizza temporaneamente i picchi della traccia (peak-hold) ed altre numerose funzioni, tra cui l'esecuzione in automatico di alcune operazioni "schedulate", oltre al salvataggio di file tipo immagine, audio o dati.

La seconda immagine riportata mostra come sia possibile effettuare lo zoom dei segnali acquisiti e misurarne alcuni parametri mediante marker.

Nella pagina ancora successiva si riporta l'immagine di uno spettro ottenuto con impostazione SR=192000 (massima) ed FFT=32768, per una risoluzione di circa 6 Hz: si può notare il segnale presente a –90000 Hz ed il calo di 6dB ai bordi della banda.

"schermata" standard

"schermata" zoom con indicazione del marker

Alcune applicazioni

Il sistema è stato testato applicando segnali IF generati in laboratorio e le principali "tarature" hanno interessato il livello dei segnali OL ed IF. Si è inoltre intervenuti sulle regolazioni di bilanciamento e fase dei segnali I&Q mediante il menù a tendina di Spectrum Lab: *Option / Audio I/O / I&Q input adj* (come da immagine sottostante) attivando *enable amplitude and phase adj* ed applicando le idonee regolazioni di *I&Q adjust balance* e *I&Q adjust phase offset*

SpecLab Configuration	n and Display Control	×			
TRX Control Memory	Filenames VVave Files Markers	System Freq-Resp			
Spectrum (1) (2) (3	3)(4) Radio DF FFT	Audio I/O AD/DA Server			
Audio Input Device	Audio Processing	Samplerate Calibrator			
1 ASUS Xonar D2 Audio 💌	Soundcard Sample Rate 48000	Correct Frequency			
3 drivers found	decimate input SR by 1				
Ctrl other sources >>	Sample Rate Calibration Table [Hz]	Displayed Frequency			
Audio Output Device	Nominal Input calib Output calib 🔺				
1 ASUS Xonar D2 Audio 👻	22050 22050.000 22050.000	Calibrate Input S.R.			
4 drivers found	32000 32000.000 32000.000				
Ctrl other destinations >>	44100 44100.000 44100.000	Calibrate Output S.R.			
	use different sample rate for output	Drift Calibrator			
 Stereo Processing minimize latency 	nominai: 11025 Hz				
10 investor directory	Resampling quality medium 💌	about SR calib.			
VQ input adjustment					
Conligate	A/D converter				
✓ Linabieu 4 Storeo Mo	da	1(L)			
✓ Stereo Mo	awala Bista (19000	gle			
Nominal S	ampie Rate = 48000				
Swapiletta	and right input channel				
 Enable am 	iplitude- and phase adjustment f	or I/Q input :			
I/Q adjustment: balance corr. = -19.000 %					
I/Q adjustment: phase offset = 0.040 °					
Help					

Con la migliore configurazione è stata ottenuta una reiezione immagine USB-LSB di 40-50 dB, come visibile nella figura sottostante.

Il dispositivo è poi stato impiegato con successo nella visualizzazione real-time di segnali-eco acquisiti in occasione di test ed esperimenti di tipo radar bistatico, di cui di seguito si riportano alcuni spettri. Quando necessario, è stato inserito a monte un idoneo sistema di conversione per riportare il segnale IF a 10 MHz (es. IF Croce 30 MHz).

Radar bistatico in banda C: eco dell'asteroide 2012DA14 ricevuto con Parabola VLBI

Radar bistatico in banda P: eco ricevuto col canale 4 Est (ramo E/W)

Radar bistatico in banda P: eco ricevuto con ¼ di cilindro BEST2 (ramo N/S)

Eco Radar Graves a 143,050 MHz ricevuto col sistema rfi Torre

Riferimenti

 Wolfgang Büscher
 Spectrum Lab - Manual and Help Index http://dl4yhf.ssl7.com/speclab/index.htm

Ringraziamenti

Si ringrazia Stelio Montebugnoli per aver svolto il ruolo di Referee interno.

Special thanks to **Wolfgang Büscher** for its powerful free software "Spectrum Lab"

Schede tecniche allegate:

- A. Demodulatore I&Q Mini-Circuits MIQA-10D
- B. Amplificatore Operazionale LMH6702
- C. Scheda audio PC ASUS XONAR D2

Plug-In 8 **Q** Demodulator

9 to 11 MHz

50Ω

Maximum Ratings

Operating Temperature	-55°C to 100°C
Storage Temperature	-55°C to 100°C
LO/RF Power	50mW
I&Q Current	40mA
Permanent damage may occur if any	of these limits are exceeded

Pin Connections

1
8
7
4
2
3,5,6
3,5,6

*Q= I+90° for LO<RF

 $Q=1-90^{\circ}$ for LO>RF

Features

· hermetically sealed metal case

- excellent 3rd and 5th order harmonic suppression
- good amplitude and phase unbalance

Applications

- radar and communication systems
- military, hi-rel applications

MIQA-10D

CASE STYLE: A06 PRICE: \$52.20 ea. QTY (1-9)

5XI/Q

Typ.

65

35

50

Min

55

Demodulator Electrical Specifications FREQUENCY CONVERSION AMPLITUDE PHASE HARMONIC UNBALANCE SUPPRESSION (MHz) LOSS UNBALANCE (dB) (dB) (Deg.) (dBc) with reference RF (SIGNAL) LO (CARRIER) 1&Q to 90° 3XI/Q Min. Max Max Тур Typ.

0.3

1.0

3.0

t,	t _u	Min.	Max.	x	σ	Max.	Тур.
9	11	DC	2	6.0	0.10	7.0	0.15
: peratin	a LO Powe	r: 10+0.5 dF	Sm				

0

N

nch)	ns (¦	ensio	Dime	utline	0
F	E	D	C	B	A
.400	.370	.310	.285	.800	.770
10.16	9.40	7.87	7.24	20.32	19.56
wt		К	J	H	G
grams		.031	.14	.20	.200
5.2		0.79	3.56	5.08	5.08

Typical Performance Data Amplitude Unbalance Phase (I&Q) DC Offset Frequency Conversion Frequency (MHz) (MHz) Loss LO=10MHz (dB)(dB) (deg.) (mV) 1&Q LO RF 0.30 0.08 90.78 90.69 9.00 9.16 9.10 9.26 10.30 10.59 10.87 10.96 11.15 11.44 11.63 11.72 12.01 12.29 12.39 12.58 5.85 5.82 0.48 0.42 0.48 0.48 0.48 0.48 0.46 0.38 0.46 0.47 0.46 0.47 0.40 0.45 0.39 0.46 0.49 0.46 0.49 0.46 0.39 0.46 0.39 0.46 0.39 0.46 0.38 5.80 5.80 0.03 9.32 9.37 0.87 0.97 1.15 1.44 1.63 1.72 2.01 2.29 2.39 2.58 2.86 3.05 3.15 3.43 3.71 3.81 3.91 90.63 90.64 90.75 90.66 90.68 90.67 90.68 90.61 90.55 90.62 90.40 90.55 90.62 90.57 90.59 90.59 90.59 9.42 9.47 9.57 9.73 9.84 9.89 10.05 10.10 10.26 10.31 10.42 10.57 10.68 10.73 10.89 11.00 11.05 0.02 0.04 0.04 0.04 0.00 0.07 0.02 0.04 0.04 0.04 0.04 0.02 0.02 0.04 0.02 9.47 9.63 9.74 9.79 9.95 10.00 10.16 10.21 10.32 10.47 10.58 10.63 10.79 10.90 10.95 11.00 12.86 13.05 13.15 13.43 13.72 13.81 13.91 4.00 14.0 90.60 MIQA-10D AMPLITUDE & PHASE UNBALANCE MIQA-10D DC OFFSET

I&Q demodulation block diagram

Mini-Circuits

ISO 9001 ISO 14001 AS 9100 CERTIFIED P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Carteria Provides ACTUAL Data Instantly at minicipality.com IF/RF MICROWAVE COMPONENTS

Notes: 1. Performance and quality attributes and conditions not expressly stated in this specification sheet are intended to be excluded and do not form a part of this specification sheet. 2. Bectrical specifications and performance data contained herein are based on Mini-Circuit's applicable established test performance cirteria and measurement instructions. 3. The parts covered by this specification sheet are subject to Mini-Circuit's applicable established test performance cirteria and measurement instructions. 3. The parts covered by this specification sheet are subject to Mini-Circuit's applicable established test performance cirteria and measurement instructions. 3. The parts covered by this specification sheet are subject to Mini-Circuit's applicable established test performance in the standard limited to the rights and benefits contained therein. For a full statement of the Standard Termis and the exclusive rights and remedies thereunder, please visit Mini-Circuit's website at www.minicircuits.com/MCLStore/terms.jsp.

REV. OR M97747 MIQA-10D DJ/VV/CP 070226

Allegato A – Demodulatore I&Q Mini-Circuits MIQA-10D

LMH6702

www.ti.com

SNOSA03F - NOVEMBER 2002 - REVISED MARCH 2013

LMH6702 1.7 GHz, Ultra Low Distortion, Wideband Op Amp

Check for Samples: LMH6702

FEATURES

- $V_{S} = \pm 5V$, $T_{A} = 25^{\circ}C$, $A_{V} = +2V/V$, $R_{L} = 100\Omega$, $V_{OUT} = 2V_{PP}$, Typical Unless Noted:
- 2nd/3rd Harmonics (5MHz, SOT-23) –100/–96dBc
- -3dB Bandwidth (V_{OUT} = 0.5 V_{PP}) 1.7 GHz
- Low Noise 1.83nV/√Hz
- Fast Settling to 0.1% 13.4ns
- Fast Slew Rate 3100V/µs
- Supply Current 12.5mA
- Output Current 80mA
- Low Intermodulation Distortion (75MHz) –67dBc
- Improved Replacement for CLC409 and CLC449

APPLICATIONS

- Flash A/D Driver
- D/A Transimpedance Buffer
- Wide Dynamic Range IF amp
- Radar/Communication Receivers
- Line Driver
- High Resolution Video

Figure 1. Inverting Frequency Response

DESCRIPTION

The LMH6702 is a very wideband, DC coupled monolithic operational amplifier designed specifically for wide dynamic range systems requiring exceptional signal fidelity. Benefiting from current feedback architecture, the LMH6702 offers unity gain stability at exceptional speed without need for external compensation.

With its 720MHz bandwidth ($A_V = 2V/V$, $V_O = 2V_{PP}$), 10-bit distortion levels through 60MHz ($R_L = 100\Omega$), 1.83nV/ \sqrt{Hz} input referred noise and 12.5mA supply current, the LMH6702 is the ideal driver or buffer for high-speed flash A/D and D/A converters.

Wide dynamic range systems such as radar and communication receivers, requiring a wideband amplifier offering exceptional signal purity, will find the LMH6702's low input referred noise and low harmonic and intermodulation distortion make it an attractive high speed solution.

The LMH6702 is constructed using VIP10[™] complimentary bipolar process and proven current feedback architecture. The LMH6702 is available in SOIC and SOT-23 packages.

Figure 2. Harmonic Distortion vs. Load and Frequency

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. VIP10 is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002–2013, Texas Instruments Incorporated

LMH6702

SNOSA03F-NOVEMBER 2002-REVISED MARCH 2013

Texas INSTRUMENTS

www.ti.com

Absolute Maximum Ratings⁽¹⁾⁽²⁾

U		
Vs		±6.75V
IOUT		See ⁽³⁾
Common Mode Input Voltage		V ⁻ to V ⁺
Maximum Junction Temperature		+150°C
Storage Temperature Range		-65°C to +150°C
Soldering Information Infrared or Convection (20 sec.)		235°C
	Wave Soldering (10 sec.)	260°C
ESD Tolerance ⁽⁴⁾	Human Body Model	2000V
	Machine Model	200V
Storage Temperature Range		-65°C to +150°C

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for (1) which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.

If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

The maximum output current (I_{OUT}) is determined by device power dissipation limitations. Human body model: 1.5k Ω in series with 100pF. Machine model: 0 Ω in series with 200pF. (3)

(4)

Operating Ratings⁽¹⁾

Thermal Resistance	sistance Package (θ_{JC})		(θ _{JA})
	8-Pin SOIC	75°C/W	160°C/W
	5-Pin SOT-23	120°C/W	187°C/W
Operating Temperature	-40°C to +85°C		
Nominal Supply Voltage	±5V to ±6V		

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.

Electrical Characteristics⁽¹⁾

 $A_V = +2$, $V_S = \pm 5V$, $R_L = 100\Omega$, $R_F = 237\Omega$; unless specified

Symbol	Parameter	Conditions	Min ⁽²⁾	Typ ⁽²⁾	Max ⁽²⁾	Units
Frequency Domain Performance						
SSBW _{SM}	-3dB Bandwidth	$V_{OUT} = 0.5 V_{PP}$		1700		
SSBWLG		V _{OUT} = 2V _{PP}		720		
LSBWLG		V _{OUT} = 4V _{PP}		480		INITIZ
SSBW _{HG}		$V_{OUT} = 2V_{PP}, A_V = +10$		140		
GF _{0.1dB}	0.1dB Gain Flatness	V _{OUT} = 2V _{PP}		120		MHz
LPD	Linear Phase Deviation	DC to 100MHz		0.09		deg
DG	Differential Gain	R _L =150Ω, 3.58MHz/4.43MHz		0.024/0.021		%
DP	Differential Phase	R _L = 150Ω, 3.58MHz/4.43MHz		0.004/0.007		deg
Time Domain Response						
TRS/TRL	Rise and Fall Time	2V Step		0.87/0.77		ns
		6V Step		1.70/1.70		ns
OS	Overshoot	2V Step		0		%
SR	Slew Rate	6V _{PP} , 40% to 60% ⁽³⁾		3100		V/µs
Ts	Settling Time to 0.1%	2V Step		13.4		ns

Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. Min/Max ratings are based on production testing unless otherwise specified. (1) Typical numbers are the most likely parametric norm. Bold numbers refer to over temperature limits.

(3) Slew Rate is the average of the rising and falling edges.

2 Submit Documentation Feedback Copyright © 2002-2013, Texas Instruments Incorporated

Product Folder Links: LMH6702

Allegato B2 – Amplificatore Operazionale LMH6702

www.ti.com

LMH6702

SNOSA03F - NOVEMBER 2002 - REVISED MARCH 2013

Electrical Characteristics⁽¹⁾ (continued)

A_V = +2, V_S = ±5V, R_L = 100 Ω , R_F = 237 Ω ; unless specified

Symbol	Parameter	Conditions	Min ⁽²⁾	Typ ⁽²⁾	Max ⁽²⁾	Units
Distortion And Noise Response						
HD2L	2 nd Harmonic Distortion	2V _{PP} , 5MHz ⁽⁴⁾ (SOT-23/SOIC)		-100/ -87		dBc
HD2		2V _{PP} , 20MHz ⁽⁴⁾ (SOT-23/SOIC)		-79/ -72		dBc
HD2H		2V _{PP} , 60MHz ⁽⁴⁾ (SOT-23/SOIC)		-63/ -64		dBc
HD3L	3 rd Harmonic Distortion	2V _{PP} , 5MHz ⁽⁴⁾ (SOT-23/SOIC)		-96/ -98		dBc
HD3		2V _{PP} , 20MHz ⁽⁴⁾ (SOT-23/SOIC)		-88/ -82		dBc
HD3H		2V _{PP} , 60MHz ⁽⁴⁾ (SOT-23/SOIC)		-70/ -65		dBc
OIM3	IMD	75MHz, P _O = 10dBm/ tone		-67		dBc
V _N	Input Referred Voltage Noise	>1MHz		1.83		nV/√Hz
I _N	Input Referred Inverting Noise Current	>1MHz		18.5		pA/√Hz
I _{NN}	Input Referred Non-Inverting Noise Current	>1MHz		3.0		pA/√Hz
SNF	Total Input Noise Floor	>1MHz		-158		dBm _{1Hz}
INV	Total Integrated Input Noise	1MHz to 150MHz		35		μV
Static, DC	Performance					
V _{IO}	Input Offset Voltage			±1.0	±4.5 ±6.0	m∨
DVIO	Input Offset Voltage Average Drift	See ⁽⁵⁾		-13		µV/°C
I _{BN}	Input Bias Current	Non-Inverting ⁽⁶⁾		-6	±15 ±21	μA
DI _{BN}	Input Bias Current Average Drift	Non-Inverting ⁽⁵⁾		+40		nA/°C
I _{BI}	Input Bias Current	Inverting ⁽⁶⁾		-8	±30 ±34	μA
DI _{BI}	Input Bias Current Average Drift	Inverting ⁽⁵⁾		-10		nA/°C
PSRR	Power Supply Rejection Ratio	DC	47 45	52		dB
CMRR	Common Mode Rejection Ration	DC	45 44	48		dB
Icc	Supply Current	R _L = ∞	11.0 10.0	12.5	16.1 17.5	mA
Miscellaneous Performance						
R _{IN}	Input Resistance	Non-Inverting		1.4		MΩ
CIN	Input Capacitance	Non-Inverting		1.6		pF
R _{OUT}	Output Resistance	Closed Loop		30		mΩ
V _{OL}	Output Voltage Range	R _L = 100Ω	±3.3 ±3.2	±3.5		V
CMIR	Input Voltage Range	Common Mode	±1.9	±2.2		V
6	Output Current		50	80		mA

(4) Harmonic distortion is strongly influenced by package type (SOT-23 or SOIC). See Application Note section under "Harmonic Distortion" for more information. Drift determined by dividing the change in parameter at temperature extremes by the total temperature change. Negative input current implies current flowing out of the device.

(5) (6)

Copyright © 2002-2013, Texas Instruments Incorporated

Submit Documentation Feedback

3

Product Folder Links: LMH6702

LMH6702

www.ti.com

SNOSA03F - NOVEMBER 2002 - REVISED MARCH 2013

Connection Diagrams

Figure 4. 5-Pin SOT-23 Top View

4 Submit Documentation Feedback

Copyright © 2002-2013, Texas Instruments Incorporated

Product Folder Links: LMH6702

Allegato B4 – Amplificatore Operazionale LMH6702

www.ti.com

SNOSA03F-NOVEMBER 2002-REVISED MARCH 2013

APPLICATION SECTION

FEEDBACK RESISTOR

Figure 26. Recommended Non-Inverting Gain Circuit

Figure 27. Recommended Inverting Gain Circuit

The LMH6702 achieves its excellent pulse and distortion performance by using the current feedback topology. The loop gain for a current feedback op amp, and hence the frequency response, is predominantly set by the feedback resistor value. The LMH6702 is optimized for use with a 237Ω feedback resistor. Using lower values can lead to excessive ringing in the pulse response while a higher value will limit the bandwidth. Application Note OA-13 discusses this in detail along with the occasions where a different R_F might be advantageous.

HARMONIC DISTORTION

The LMH6702 has been optimized for exceptionally low harmonic distortion while driving very demanding resistive or capacitive loads. Generally, when used as the input amplifier to very high speed flash ADCs, the distortions introduced by the converter will dominate over the low LMH6702 distortions shown in the Typical Performance Characteristics section. The capacitor C_{SS} , shown across the supplies in Figure 26 and Figure 27, is critical to achieving the lowest 2^{nd} harmonic distortion. For absolute minimum distortion levels, it is also advisable to keep the supply decoupling currents (ground connections to C_{POS} , and C_{NEG} in Figure 26 and Figure 27) separate from the ground connections to sensitive input circuitry (such as R_G , R_T , and R_{IN} ground connections). Splitting the ground plane in this fashion and separately routing the high frequency current spikes on the decoupling caps back to the power supply (similar to "Star Connection" layout technique) ensures minimum coupling back to the input circuitry and results in best harmonic distortion response (especially 2^{nd} order distortion).

Copyright © 2002-2013, Texas Instruments Incorporated

Submit Documentation Feedback

9

Product Folder Links: LMH6702

Allegato B5 – Amplificatore Operazionale LMH6702

LMH6702

www.ti.com

SNOSA03F - NOVEMBER 2002 - REVISED MARCH 2013

If this lay out technique has not been observed on a particular application board, designer may actually find that supply decoupling caps could adversely affect HD2 performance by increasing the coupling phenomenon already mentioned. Figure 28 below shows actual HD2 data on a board where the ground plane is "shared" between the supply decoupling capacitors and the rest of the circuit. Once these capacitors are removed, the HD2 distortion levels reduce significantly, especially between 10MHz-20MHz, as shown in Figure 28 below:

Figure 28. Decoupling Current Adverse Effect on a Board with Shared Ground Plane

At these extremely low distortion levels, the high frequency behavior of decoupling capacitors themselves could be significant. In general, lower value decoupling caps tend to have higher resonance frequencies making them more effective for higher frequency regions. A particular application board which has been laid out correctly with ground returns "split" to minimize coupling, would benefit the most by having low value and higher value capacitors paralleled to take advantage of the effective bandwidth of each and extend low distortion frequency range.

Another important variable in getting the highest fidelity signal from the LMH6702 is the package itself. As already noted, coupling between high frequency current transients on supply lines and the device input can lead to excess harmonic distortion. An important source of this coupling is in fact through the device bonding wires. A smaller package, in general, will have shorter bonding wires and therefore lower coupling. This is true in the case of the SOT-23 compared to the SOIC package where a marked improvement in HD can be measured in the SOT-23 package. Figure 29 below shows the HD comparing SOT-23 to SOIC package:

Figure 29. SOIC and SOT-23 Packages Distortion Terms Compared

The LMH6702 data sheet shows both SOT-23 and SOIC data in the Electrical Characteristic section to aid in selecting the right package. The Typical Performance Characteristics section shows SOIC package plots only.

10 Submit Documentation Feedback

Copyright © 2002-2013, Texas Instruments Incorporated

Product Folder Links: LMH6702

Xonar D2/PM

Bus CompatibilityPCI
Audio PerformanceOutput Signal-to-Noise Ratio (A-Weighted) (Front-out) : 118 dB Output THD+N at 1kHz (Front-out) : >0.0004 %(-108 dB) Frequency Response (-3dB, 16bit/44.1KHz input) : 10 Hz to 46 KHz Output/Input Full-Scale Voltage : Unbalanced Output : 2 Vrms (5.65 Vp-p)
Chipset Audio Processor :ASUS AV200 High-Definition Sound Processor (Max. 192KHz/24bit)
Sample Rate and ResolutionAnalog Playback Sample Rate and Resolution : 44.1K/48K/88.2K/96K/176.4K/192KHz @ 16bit/24bit Analog Recording Sample Rate and Resolution : 44.1K/48K/88.2K/96K/176.4K/192KHz @ 16bit S/PDIF Digital Output : 44.1K/48K/88.2K/96K/176.4K/192KHz @ 16bit/24bit S/PDIF Digital Input : 44.1K/48K/88.2K/96K/176.4K/192KHz @ 16bit/24bit ASIO Driver Support : 44.1K/48K/88.2K/96K/176.4K/192KHz @ 16bit/24bit
ConnectivityAnalog Output 4 x 3.5 mm jack (1/8") (Front out/Side out/Center-Subwoofer out/Rear out) Analog Input 2 x 3.5 mm jack (1/8") (Line-in/Mic-in) Digital 1 x S/PDIF out (1 x Coaxial) 1 x S/PDIF in (1 x Coaxial) 1 x MIDI in/out 1 x Aux in (4-pin header)
Special FeaturesDolby® Technologies : Dolby® Digital Live/Dolby® Headphone /Dolby® Virtual Speaker /Dolby® Pro-Logic II DTS® Technologies : DTS Interactive Encoder/DTS Neo:PC technologies
AccessoriesH6 extension board cable x 1 DVI-to-HDMI cable x 1 HDMI-to-HDMI cable x 1 S/PDIF adaptor x 2 3.5mm-to-RCA adaptor cable (8-ch) x 4 Additional MIDI card, cable, and external standard MIDI adaptor Y cable x 1 Quick Start Guide x 1

 $http://www.asus.com/Sound_Cards_and_DigitaltoAnalog_Converters/Xonar_D2PM/$

18/11/2013

Allegato C1 – Scheda audio PC ASUS XONAR D2

2. About Hardware

2.1 Xonar D2 Audio Processing Card

ASUS Xonar D2

4

No	ltem	Description	
1	Microphone Jack	Connect your external PC microphone to this 3.5mm jack for voice input. Built-in high-quality Microphone pre-amplifier.	
2	Line Input Jack	Connect analog devices like MP3 players, CD players, music synthesizers and other line-level sound sources to this 3.5mm jack for audio recording or processing. (Through Ultra-high fidelity 118dB SNR A-D converter)	
3	Headphone/Front Output Jack	Connect your headphones or 2/2.1 channel speakers to this jack. For multi-channel speaker systems, connects to the front left/right input on the powered speakers.	
4	Side Surround Output Jack	Connects to the surround channel input on 4/4.1/5.1/6.1/7.1 powered analog speakers.	
5	Center/Subwoofer Output Jack	Connects to the front center/subwoofer input on 5.1/6.1/7.1 powered analog speakers.	
6	Rear/Back Surround Output Jack	Connects to the Back Surround input on 6.1/7.1 powered analog speakers.	
7	S/PDIF Input	Coaxial and optical TOSLINK combo digital input jack. Connects to external digital audio sources such as MD players, CD players, or DVD players, for audio recording or loopback.	
8	S/PDIF Output	Coaxial and optical TOSLINK combo digital output jack. Connects to external digital decoder or digital speaker systems, Home Theater systems, AV receivers for outputting digital audio including PCM, Dolby Digital, DTS, WMA-Pro, etc.	
9	CD Input Header	4-pin header. Connects to the Analog Audio output on the back panel of CD/DVD-ROM drive using an Analog CD audio cable, which is usually available with your CD/DVD- ROM drive. You can still play CD audio through the Xonar driver without connecting this. We recommend playing audio through the driver to take advantage of the Xonar's high quality D-A converter, but this header is provided in case you need it.	
10	Aux Input Header	4-pin header. Usually connects to the Analog Audio output of TV tuner card or other sound source inside your PC system. (To monitor your TV tuner card's audio from this Aux-In, you must enable the "monitor" function for Aux-In in the Xonar Audio Center software's recording mixer.)	
11	MIDI VO Header	Connects to the additional MIDI board/bracket (available in the package)	
12	Main Audio Processor	ASUS Xonar AV200 Audio Processing Unit (DuplexHD 192K/24bit)	
13	PCI Bus Golden Fingers	Connects to the PCI slot on your motherboard	