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The aim of the project 
 

Intro 

Most of the data acquisition systems do not have their own stable clock to sample analog input signals but 

provide input lines to connect external ultra-stable clock source. Usually an expensive signal generator is 

used locked to ultra-stable 10MHz sine wave reference, but, the higher the frequency range the higher is 

the cost, and, the higher the frequency the worst can be the phase noise when for budget reasons the 

target must be a cheaper signal generator (sometimes refurbished). 

A very interesting module has been realized few years ago by the Valon Technology LLC and passed many 

careful tests also done by the community of CASPER (https://casper.berkeley.edu/wiki/Main_Page). It is a 

Dual 137.5-4400MHz Frequency Synthesizer mini board (about only 50x50mm) having low phase noise an 

low power consumption and integrating a microcontroller and flash memory to program the desired 

frequency to individual output and the possibility to use an external reference or an onboard oscillator. 

The 5007 synthesizer module is sell unboxed (therefore unshielded) and needs an additional serial adapter 

(that can be a 9-Pin DSUB connector interface or a mini USB adapter, both 3VTTL). 

Several data acquisition boards used here at the Medicina Radiotelescopes station may use this synthesizer 

if placed in the same rack of the backend and properly shielded. Due to the flexibility and scalability of the 

Medicina backends that allow to load different projects over the same hardware there is the need to use 

different clock frequencies to drive the ADC boards, and, if the frequency change can be done remotely and 

loaded automatically by the same scripts which configure the backend project would be very useful. 

The target can be easily reached by using a Ethernet-Serial adapter which allows to use serial devices over a 

Ethernet link. 

  

https://casper.berkeley.edu/wiki/Main_Page


The synthesizer module 
 

6 

 

The synthesizer module 
 

5007 Valon Technology LLC Data Sheet  

 

The Valon Technology LLC 5007 Dual Frequency Synthesizer module provides two independent, low phase 

noise, frequency sources suitable for high quality clock, carrier, or local oscillator frequency generation 

applications. The unique feature of our synthesizers is our microprocessor controller with FLASH based 

non-volatile memory that lets you retain your frequency setting after power down. This makes these 

synthesizers ideal for portable equipment or in any application where user programmable and non-volatile 

frequency settings are desirable. Careful circuit design and layout techniques assures low phase-noise and 

spectral purity across all frequencies. 

A RS-232 or USB serial interface and our intuitive user configuration software allows the user to program 

the desired operating frequency of each synthesizer and save to the on-board FLASH memory. The 

synthesizer will then power up using the FLASH memory to reload the last saved frequencies. 

Either output can be independently set to any frequency in the 138-4400MHz range. The synthesizer can be 

used with the on-board TCXO or an external reference.  

The synthesizer module consists of two separate fractional/integer-N synthesizers chips. The RF output of 

the synthesizer chips are each buffered by a wide-band MMIC RF amplifier followed by an output 

attenuator. 

Each synthesizer chip has its own 3.3V low-noise, LDO voltage regulator. A separate 5V LDO is used to 

power the output buffer amplifier. The recommended input voltage is 5.0V in order to ensure the LDOs are 

in regulation.  

Both synthesizers are referenced to a common 10MHz temperature stabilized crystal oscillator (TCXO). A 

software controlled witch also lets the user select an external reference. When the internal reference is 

selected, a sample of the reference signal is available at the reference connector. External reference input 
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should be ac coupled and between -10 and 10dBm. The external reference frequency should be an integer 

multiple of 10MHz, such as 10, 20, 50, 100, or 150MHz. A 5MHz external reference frequency can be used 

by enabling the reference doubler function with the Configuration Manager software. 

Both synthesizers will operate either in the fractional-N or integer-N mode depending on the user selected 

frequency. Since the internal phase-frequency detectors and loop filters are set operate at 10MHz, the 

synthesizers will be operating in the factional-N mode whenever a channel frequency is selected that is not 

an integer multiple of 10MHz. The Configuration Manager allows the user to set the frequency increment 

to channel spacing as small as 5kHz in the divide-by-1 range with the reference doubler on. The frequency 

increment will be smaller by the divide-by factor on lower frequencies. In order to minimize phase noise 

and spurs its best to use the largest possible frequency increment setting that will provide the desired 

output frequency. 

 

 

The Configuration Manager software along with the serial adapter allows the user to set the desired output 

frequency and channel spacing directly. The Configuration Manager can also store any offset frequency and 

sign. This allows direct entry of the desired frequency if the synthesizer is used as a local oscillator in a 

heterodyne system. For example, if the synthesizer is used as the first LO in a high-side receiver with a 

160MHz IF and 1045MHz is the desired tuned frequency, then the user would simply set the desired 
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frequency to 1045MHz and the offset to 160MHz. The Configuration Manager calculates the correct LO 

output frequency. 

The low-power on-board microcontroller (µC) is used to load the multiple control and frequency registers 

of each synthesizer with the data stored in either its RAM or FLASH memory. The µC is also used to manage 

bi-directional communications over the serial interface.  

On power-up, the µC reads the previously saved frequency and control setting for each synthesizer out of 

FLASH memory. The µC then loads this data using the internal serial bus to each of the synthesizers. The 

synthesizer will then lock and pass the lock detect signal back to the µC. 

After power-up, the Configuration Manager software can communicate with the synthesizer module and 

control all the synthesizer frequency and control settings. The Write Registers command can be used at any 

time to update the register settings. The Read Registers command can be used to see what the frequency 

and control settings are. The Write FLASH command is used to store the setting into the non-volatile FLASH 

memory. The Configuration Manager can also Save and Get synthesizer's setting to and from a local disk.  

 

5007 Block Diagram 
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5007 Dimensions and Mounting locations 

 

 

 

 

5007 Connectors 
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5007 Typical Phase Noise 

Phase noise was measured using the internal 10MHz reference with the Phase Detector Frequency set to 

10MHz. The Frequency Increment was set to 1000kHz. The Charge Pump Current setting was 5mA.  

The phase noise data was taken at the center of the 5 frequency bands. The phase noise will be slightly 

higher at the top of each band and slightly lower at the bottom.  

Using an external low phase noise frequency reference will also improve phase noise. 
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5007 User Interface 

 

When connected via USB (or serial RS-232 port) it is possible to configure it using a provided windows tool 

(see next picture). The producer provides also Labview driver to develop your own tool or you can use a 

GPL Licensed Python library developed by the NRAO observatory. 
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Moxa NPORT IA-5150 
 

NPORT IA-5150 Data Sheet 

 

The NPort IA5150/5250 series of device servers deliver easy and reliable serial-to-Ethernet connectivity for 

the industrial automation market. The NPort IA5150/5250 series is designed to allow any serial device to 

connect to an Ethernet network. The compact size of NPort IA device servers makes them an ideal choice 

for connecting RS-232/422/485 serial devices, such as PLCs, sensors, meters, motors, drives, barcode 

readers, and operator displays. The NPort IA5150/5250 Series device servers come with a compact and 

rugged DIN-Rail mountable casing.  

NPort IA serial device servers ensure the compatibility of network software that uses a standard network 

API (Winsock or BSD Sockets) by providing five modes: TCP Server, TCP Client, UDP, Pair Connection, 

Ethernet Modem, and Rtelnet. Thanks to NPort IA5150/5250 series’ Real COM/TTY drivers, software that 

works with COM/TTY ports can be set up to work over a TCP/IP network, without modifying the serial COM 

software applications. This excellent feature preserves your software investment and lets you enjoy the 

benefits of networking your serial devices instantly.  

NPort IA serial device servers support automatic IP configuration protocols (DHCP, BOOTP) and manual 

configuration via a handy web browser console. Both methods ensure quick and effective installation. And 

with NPort IA5150/5250’s Windows Utility, installation is very straightforward, since all system parameters 

can be stored and then copied to other device servers simultaneously.  

Product Features 

NPort IA5150/5250 Series device servers have the following features:  

 Make your serial devices Internet ready  

 Versatile socket operating modes, including TCP Server, TCP Client, UDP, and Real COM  

 driver  

 2- or 4-wire RS-485 with patented ADDC™ (Automatic Data Direction Control)  

 Slim type, inch-wide industrial strength casing  

 DIN-Rail or wall mountable  

 Built-in Ethernet cascading ports for easy wiring (RJ45 only)  
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 Redundant dual DC power inputs  

 Warning by relay output and E-mail  

 10/100BaseTX (RJ45) or 100BaseFX (SC connector, Single/Multi mode) available  

 IP30 

 

Product Specifications 

LAN 

Ethernet Switch Ports 2 10/100BaseT(X) ports (RJ45 connector) 

Protection Built-in 1.5 KV magnetic isolation 

 

Serial Interface 

Interface RS-232/422/485 

No. of Ports 1 

Port Type Male DB9 for RS-232; 5-pin terminal block for RS-422/485 

Signals RS-232 TxD, RxD, RTS, CTS, GND, DTR, DSR, DCD 

 RS-422: Tx+, Tx-, Rx+, Rx-, GND 

 RS-485 (2-wire): Data+, Data-, GND 

 RS-485 (4-wire): Tx+, Tx-, Rx+, Rx-, GND 

Serial Line Protection 15 KV ESD for all signals 

RS-485 Data Direction Patented ADDC™ (Automatic Data Direction Control)  

 

Serial Communication Parameters 

Parity None, Even, Odd, Space, Mark 
Data Bits  5, 6, 7, 8 

Stop Bit 1, 1.5, 2 

Flow Control RTS/CTS (for RS-232 only), XON/XOFF  

Transmission Speed 110 bps to 230.4 Kbps 

 

Power Requirements 

Power Input  12 to 48 VDC  

Alarm Contact  Relay output with current carrying capacity of 1A @ 24 VDC 

 

Mechanical 

Casing IP30 protection 

Dimensions (W × H × D) 29 × 89.2 × 118.5 mm 

Weight 0.15 kg 

 

Environmental 

Operating Temperature 0 to 55°C (32 to 131°F), 5 to 95%RH 
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Panel Layout 

 

 

Operation Modes 

NPort IA5150/5250 Serial Device Servers network-enable traditional RS-232/422/485 devices, in which a 

Serial Device Server is a tiny computer equipped with a CPU, real-time OS, and TCP/IP protocols that can bi-

directionally translate data between the serial and Ethernet formats. Your computer can access, manage, 

and configure remote facilities and equipment over the Internet from anywhere in the world. 

Traditional SCADA and data collection systems rely on serial ports (RS-232/422/485) to collect data from 

various kinds of instruments. Since NPort IA5150/5250 Serial Device Servers network-enable instruments 

equipped with an RS-232/422/485 communication port, your SCADA and data collection system will be able 

to access all instruments connected to a standard TCP/IP network, regardless of whether the devices are 

used locally or at a remote site. 

NPort IA5150/5250 is an external IP-based network device that allows you to expand the number of serial 

ports for a host computer on demand. As long as your host computer supports the TCP/IP protocol, you 

won’t be limited by the host computer’s bus limitation (such as ISA or PCI), or lack of drivers for various 

operating systems. 

In addition to providing socket access, NPort IA5150/5250 also comes with a Real COM/TTY driver that 

transmits all serial signals intact. This means that your existing COM/TTY-based software can be preserved, 

without needing to invest in additional software.  

Three different Socket Modes are available: TCP Server, TCP Client, and UDP Server/Client. The main 

difference between the TCP and UDP protocols is that TCP guarantees delivery of data by requiring the 

recipient to send an acknowledgement to the sender. UDP does not require this type of verification, making 

it possible to offer speedier delivery. UDP also allows unicast or multicast of data to only one IP or groups 

of IP addresses. 
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Real COM Mode 

NPort IA5150/5250 comes equipped with COM drivers that work with Window 95/98/ME/NT/2000/XP 

systems, and also TTY drivers for Linux systems. The driver establishes a transparent connection between 

host and serial device by mapping the IP:Port of the NPort IA5150/5250’s serial port to a local COM/TTY 

port on the host computer. Real COM Mode also supports up to 4 simultaneous connections, so that 

multiple hosts can collect data from the same serial device at the same time. 

One of the major conveniences of using Real COM Mode is that Real COM Mode allows users to continue 

using RS-232/422/485 serial communications software that was written for pure serial communications 

applications. The driver intercepts data sent to the host’s COM port, packs it into a TCP/IP packet, and then 

redirects it through the host’s Ethernet card. At the other end of the connection, the NPort IA5150/5250 

accepts the Ethernet frame, unpacks the TCP/IP packet, and then transparently sends it to the appropriate 

serial device attached to one of the NPort IA5150/5250’s serial ports.  

TCP Server Mode 

In TCP Server mode, NPort IA5150/5250 is configured with a unique IP:Port address on a TCP/IP network.  

NPort IA5150/5250 waits passively to be contacted by the host computer, allowing the host computer to 

establish a connection with and get data from the serial device. This operation mode also supports up to 4 

simultaneous connections, so that multiple hosts can collect data from the same serial device—at the same 

time. 

As illustrated in the figure, data transmission proceeds as follows: 

1. The host requests a connection from the NPort IA5150/5250 configured for TCP Server Mode. 

2. Once the connection is established, data can be transmitted in both directions—from the host to 

the NPort IA5150/5250, and from the NPort IA5150/5250 to the host. 
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Web Console Configuration 

The Web Console is the most user-friendly way to configure the NPort IA5150/5250 series products.  

Opening Your Browser with the cookie function enabled just Type 192.168.127.254 in the Address input 

box (use the correct IP address if different from the default), and then press Enter. The NPort IA5150/5250 

homepage will open. On this page, you can see a brief description of the Web Console’s nine function 

groups. 
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Network Settings 

You must assign a valid IP address to NPort IA5150/5250 before it will work in your network environment. 

Your network system administrator should provide you with an IP address and related settings for your 

network. The IP address must be unique within the network (otherwise, NPort IA5150/5250 will not have a 

valid connection to the network). First time users can refer to Chapter 3, “Initial IP Address Configuration,” 

for more information.  

You can choose from four possible “IP configuration” modes—Static, DHCP, DHCP/BOOTP, and BOOTP—

located under the web console screen’s IP configuration drop-down box. 
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Serial Settings 
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Operating Settings 

 

 

  



Boxing Two Synthesizer modules 
 

20 

 

Boxing Two Synthesizer modules 
 

1U Rack mountable Ethernet Controlled Synthesizer 

 

The first module is a 1U rack mountable device which is actually used as the main dual clock distributor in 

the BEST-2 rack in the northern cross control room at Medicina. The 10 MHz input reference is generated 

by the Medicina Maser Atomic Clock while the dual outputs serves directly a ROACH board equipped with 

two 8 bit 1Gbps ADCs. These output can be replicated by connecting them to the local clock distributor 

which amplifies and splits the sine waves to serve more devices depending on the project. 

Looking at the pictures you can see the basic elements within the box and the simple links where the red 

wires are 5 Volts distribution, the yellow twisted with the black ground is the 12 Volts, the group of yellow 

wires are the serial data over the RS-232 protocol and blue/brown the 220 Volts line. The 12 Volts are 

generated by a switching power supply fully encapsulated, the Traco Power TMLM 10112 (AC/DC Power 

Modules, Input 100-240VAC, 50-60Hz, Output 12VDC / 833mA), then the regulator 7805 generates the +5V 

(a fan module working at 12V has been placed above its heat sink).  
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The front panel provides a button switch to power on and off the module, two green LEDs indicating if 5 

Volts modules are powered, the SMA connectors for RF input/output of the clock synthesizer ant the 

Ethernet port of the TCP/RS-232 converter. On the rear panel you will find the 220V socket with the fuse. 
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USB Pocket Synthesizer 

 

A second unit has been realized. It is a USB pocket synthesizer which needs only of a 220VAC-5VDC 

switching power supply (Traco Power TMLM 10105, Input 100-240VAC, 50-60Hz, Output 5VDC / 2000mA). 
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NRAO Linux Python Library 
 

Source Code 

# Copyright (C) 2011 Associated Universities, Inc. Washington DC, USA. 

#  

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

#  

# This program is distributed in the hope that it will be useful, but 

# WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

#  

# You should have received a copy of the GNU General Public License 

# along with this program; if not, write to the Free Software 

# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 

#  

# Correspondence concerning GBT software should be addressed as follows: 

# GBT Operations 

# National Radio Astronomy Observatory 

# P. O. Box 2 

# Green Bank, WV 24944-0002 USA 

 

""" 

Provides a serial interface to the Valon 500x. 

""" 

 

# Python modules 

import struct 

# Third party modules 

import serial 

 

 

__author__ = "Patrick Brandt" 

__copyright__ = "Copyright 2011, Associated Universities, Inc." 

__credits__ = ["Patrick Brandt, Stewart Rumley, Steven Stark"] 

__license__ = "GPL" 

#__version__ = "1.0" 

__maintainer__ = "Patrick Brandt" 

 

 

# Handy aliases 

SYNTH_A = 0x00 

SYNTH_B = 0x08 

 

INT_REF = 0x00 

EXT_REF = 0x01 

 

ACK = 0x06 

NACK = 0x15 

 

class Synthesizer: 

    def __init__(self, port): 

        self.conn = serial.Serial(None, 9600, serial.EIGHTBITS, 

                                  serial.PARITY_NONE, serial.STOPBITS_ONE) 

        self.conn.setPort(port) 
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    def _generate_checksum(self, bytes): 

        return chr(sum([ord(b) for b in bytes]) % 256) 

 

    def _verify_checksum(self, bytes, checksum): 

        return (self._generate_checksum(bytes) == checksum) 

 

    def _pack_freq_registers(self, ncount, frac, mod, dbf, old_bytes): 

        dbf_table = {1: 0, 2: 1, 4: 2, 8: 3, 16: 4} 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', old_bytes) 

        reg0 &= 0x80000007 

        reg0 |= ((ncount & 0xffff) << 15) | ((frac & 0x0fff) << 3) 

        reg1 &= 0xffff8007 

        reg1 |= (mod & 0x0fff) << 3 

        reg4 &= 0xff8fffff 

        reg4 |= (dbf_table.get(dbf, 0)) << 20 

        return struct.pack('>IIIIII', reg0, reg1, reg2, reg3, reg4, reg5) 

 

    def _unpack_freq_registers(self, bytes): 

        dbf_rev_table = {0: 1, 1: 2, 2: 4, 3: 8, 4: 16} 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', bytes) 

        ncount = (reg0 >> 15) & 0xffff 

        frac = (reg0 >> 3) & 0x0fff 

        mod = (reg1 >> 3) & 0x0fff 

        dbf = dbf_rev_table.get((reg4 >> 20) & 0x07, 1) 

        return ncount, frac, mod, dbf 

 

    def get_frequency(self, synth): 

        """ 

        Returns the current output frequency for the selected synthesizer. 

 

        @param synth : synthesizer this command affects (0 for 1, 8 for 2). 

        @type  synth : int 

 

        @return: the frequency in MHz (float) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(24) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        ncount, frac, mod, dbf = self._unpack_freq_registers(bytes) 

        EPDF = self._getEPDF(synth) 

        return (ncount + float(frac) / mod) * EPDF / dbf 

 

    def set_frequency(self, synth, freq, chan_spacing = 10.): 

        """ 

        Sets the synthesizer to the desired frequency 

 

        Sets to the closest possible frequency, depending on the channel spacing. 

        Range is determined by the minimum and maximum VCO frequency. 

 

        @param synth : synthesizer this command affects (0 for 1, 8 for 2). 

        @type  synth : int 

 

        @param freq : output frequency 

        @type  freq : float 

 

        @param chan_spacing : output frequency increment 

        @type  chan_spacing : float 

 

        @return: True if success (bool) 

        """ 

        min, max = self.get_vco_range(synth) 

        dbf = 1 

        while (freq * dbf) <= min and dbf <= 16: 

            dbf *= 2 
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        if dbf > 16: 

            dbf = 16 

        vco = freq * dbf 

        EPDF = self._getEPDF(synth) 

        ncount = int(vco / EPDF) 

        frac = int((vco - ncount * float(EPDF)) / chan_spacing + 0.5) 

        mod = int(EPDF / float(chan_spacing) + 0.5) 

        if frac != 0 and mod != 0: 

            while not (frac & 1) and not (mod & 1): 

                frac /= 2 

                mod /= 2 

        else: 

            frac = 0 

            mod = 1 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        old_bytes = self.conn.read(24) 

        checksum = self.conn.read(1) 

        #self._verify_checksum(old_bytes, checksum) 

        bytes = struct.pack('>B24s', 0x00 | synth, 

                            self._pack_freq_registers(ncount, frac, mod, 

                                                      dbf, old_bytes)) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_reference(self): 

        """ 

        Get reference frequency in MHz 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x81) 

        self.conn.write(bytes) 

        bytes = self.conn.read(4) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        freq = struct.unpack('>I', bytes)[0] 

        return freq 

 

    def set_reference(self, freq): 

        """ 

        Set reference frequency in MHz 

 

        @param freq : frequency in MHz 

        @type  freq : float 

 

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>BI', 0x01, freq) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_rf_level(self, synth): 

        """ 

        Returns RF level in dBm 

 

        @param synth : synthesizer address, 0 or 8 

        @type  synth : int 
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        @return: dBm (int) 

        """ 

        rfl_table = {0: -4, 1: -1, 2: 2, 3: 5} 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(24) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', bytes) 

        rfl = (reg4 >> 3) & 0x03 

        rf_level = rfl_table.get(rfl) 

        return rf_level 

 

    def set_rf_level(self, synth, rf_level): 

        """ 

        Set RF level 

 

        @param synth : synthesizer address, 0 or 8 

        @type  synth : int 

 

        @param rf_level : RF power in dBm 

        @type  rf_level : int 

 

        @return: True if success (bool) 

        """ 

        rfl_rev_table = {-4: 0, -1: 1, 2: 2, 5: 3} 

        rfl = rfl_rev_table.get(rf_level) 

        if(rfl is None): return False 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(24) 

        checksum = self.conn.read(1) 

        #self._verify_checksum(bytes, checksum) 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', bytes) 

        reg4 &= 0xffffffe7 

        reg4 |= (rfl & 0x03) << 3 

        bytes = struct.pack('>BIIIIII', 0x00 | synth, 

                            reg0, reg1, reg2, reg3, reg4, reg5) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_options(self, synth): 

        """ 

        Get options tuple: 

 

        bool double:   if True, reference frequency is doubled 

        bool half:     if True, reference frequency is halved 

        int  r:        reference frequency divisor 

        bool low_spur: if True, minimizes PLL spurs; 

                       if False, minimizes phase noise 

        double and half both True is same as both False. 

 

        @param synth : synthesizer address 

 

        @return: double (bool), half (bool), r (int), low_spur (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(24) 
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        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', bytes) 

        low_spur = ((reg2 >> 30) & 1) & ((reg2 >> 29) & 1) 

        double = (reg2 >> 25) & 1 

        half = (reg2 >> 24) & 1 

        r = (reg2 >> 14) & 0x03ff 

        return double, half, r, low_spur 

 

    def set_options(self, synth, double = 0, half = 0, r = 1, low_spur = 0): 

        """ 

        Set options. 

         

        double and half both True is same as both False. 

 

        @param synth : synthesizer base address 

        @type  synth : int 

         

        @param double : if 1, reference frequency is doubled; default 0 

        @type  double : int 

         

        @param half : if 1, reference frequency is halved; default 0 

        @type  half : int 

         

        @param r : reference frequency divisor; default 1 

        @type  r : int 

         

        @param low_spur : if 1, minimizes PLL spurs; 

                          if 0, minimizes phase noise; default 0 

        @type  low_spur : int 

 

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x80 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(24) 

        checksum = self.conn.read(1) 

        #self._verify_checksum(bytes, checksum) 

        reg0, reg1, reg2, reg3, reg4, reg5 = struct.unpack('>IIIIII', bytes) 

        reg2 &= 0x9c003fff 

        reg2 |= (((low_spur & 1) << 30) | ((low_spur & 1) << 29) |  

                 ((double & 1) << 25) | ((half & 1) << 24) | 

                 ((r & 0x03ff) << 14)) 

        bytes = struct.pack('>BIIIIII', 0x00 | synth, 

                            reg0, reg1, reg2, reg3, reg4, reg5) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_ref_select(self): 

        """Returns the currently selected reference clock. 

 

        Returns 1 if the external reference is selected, 0 otherwise. 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x86) 

        self.conn.write(bytes) 

        bytes = self.conn.read(1) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        is_ext = struct.unpack('>B', bytes)[0] 

        return is_ext & 1 
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    def set_ref_select(self, e_not_i = 1): 

        """ 

        Selects either internal or external reference clock. 

 

        @param e_not_i : 1 (external) or 0 (internal); default 1 

        @type  e_not_i : int 

 

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>BB', 0x06, e_not_i & 1) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_vco_range(self, synth): 

        """ 

        Returns (min, max) VCO range tuple. 

 

        @param synth : synthesizer base address 

        @type  synth : int 

 

        @return: min,max in MHz 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x83 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(4) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        min, max = struct.unpack('>HH', bytes) 

        return min, max 

 

    def set_vco_range(self, synth, min, max): 

        """ 

        Sets VCO range. 

 

        @param synth : synthesizer base address 

        @type  synth : int 

 

        @param min : minimum VCO frequency 

        @type  min : int 

 

        @param max : maximum VCO frequency 

        @type  max : int 

 

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>BHH', 0x03 | synth, min, max) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def get_phase_lock(self, synth): 

        """ 

        Get phase lock status 

 

        @param synth : synthesizer base address 

        @type  synth : int 
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        @return: True if locked (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x86 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(1) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        mask = (synth << 1) or 0x20 

        lock = struct.unpack('>B', bytes)[0] & mask 

        return lock > 0 

 

    def get_label(self, synth): 

        """ 

        Get synthesizer label or name 

 

        @param synth : synthesizer base address 

        @type  synth : int 

 

        @return: str 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x82 | synth) 

        self.conn.write(bytes) 

        bytes = self.conn.read(16) 

        checksum = self.conn.read(1) 

        self.conn.close() 

        #self._verify_checksum(bytes, checksum) 

        return bytes 

 

    def set_label(self, synth, label): 

        """ 

        Set synthesizer label or name 

 

        @param synth : synthesizer base address 

        @type  synth : int 

 

        @param label : up to 16 bytes of text 

        @type  label : str 

         

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B16s', 0x02 | synth, label) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 

 

    def flash(self): 

        """ 

        Flash current settings for both synthesizers into non-volatile memory. 

 

        @return: True if success (bool) 

        """ 

        self.conn.open() 

        bytes = struct.pack('>B', 0x40) 

        checksum = self._generate_checksum(bytes) 

        self.conn.write(bytes + checksum) 

        bytes = self.conn.read(1) 

        self.conn.close() 

        ack = struct.unpack('>B', bytes)[0] 

        return ack == ACK 
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    def _getEPDF(self, synth): 

        """ 

        Returns effective phase detector frequency. 

 

        This is the reference frequency with options applied. 

        """ 

        reference = self.get_reference() / 1e6 

        double, half, r, low_spur = self.get_options(synth) 

        if(double): reference *= 2.0 

        if(half):   reference /= 2.0 

        if(r > 1):  reference /= r 

        return reference 

 


