
TimeServerVlbi

-

A VLBI data stream real-time monitor

Matteo Stagni

March 25, 2015

IRA 485/15

Abstract

A couple of Python scripts that serve the purpose of monitoring VLBI data streams and

check their time coherence. The software has been developed to test and verify in real time

data streams coming from a dBBC backend using a Fila10G formatter without the need to

prepare a VLBI scheduled experiment.

1

Contents

1 Introduction 3

2 MARK5B 3

2.1 MARK5B data format on the network . 4

3 VDIF 5

3.1 VTP - VDIF transport protocol . 6

4 timeServerClient 6

4.1 Usage . 7

5 timeServerVlbi 7

5.1 Usage . 8

6 Conclusions 10

2

1 Introduction

Since the introduction of a new digital backend, the dBBC, in all Italian VLBI antennas facilities

there has been an acceleration towards new ways of dealing with VLBI data. The network

capabilities provided by the Fila10G formatter, an FPGA board capable of streaming UDP

data packets up to 4 Gbit/s has enabled remote recoding on COTS hardware and software, and

further pushes towards real-time correlation.

The pitfalls of dealing with this new formatter have spurred us to find a rapid way to

test the newly introduced capabilities such as the VDIF data format. Planned and unforeseen

maintenance time at the antennas have done the rest.

The overall program was thought as a ’surrogate’ of a real-time VLBI experiment which is

more time consuming to prepare and requires pointing a source at the antennas. This would

have been difficult to schedule and would have required extra work for operators. Instead a

timeServerVlbi instance can be run even when there is no actual observation in place, but only

the formatter is on sending out packets on the network.

2 MARK5B

The Mark5B header format is the de-facto present standard when dealing with VLBI data. It

is supported by a number of recorders and correlators, though its dimension was not designed

with network capabilities in mind. Its biggest downside lays in its frame length, 10000 bytes

which cannot be supported by standard network appliances which are limited to Jumbo frames

up to a size of 9000 bytes.

019.doc 11/29/2004 1

MARK 5 MEMO #019

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

 Telephone: 978-692-4764
 Fax: 781-981-0590

24 November 2004

TO: Mark 5B development group

FROM: Alan R. Whitney and Roger J. Cappallo

SUBJECT: Mark 5B design specifications

1. StreamStor disk format

Within each scan, the data on the SS disk are divided into equal-length ‘disk frames’ (DFs).
Each DF carries a frame header of four 32-bit words followed by 2500 32-bit words of data.
There is always a DF boundary at each UT second tick.

Recording starts on the first DOT second tick after a VSI-S ‘receive=start’ command is issued,
so each scan always begin with a DF header. Recording stops on the first DOT second tick after
a VSI-S ‘receive=stop’ command is issued.

1.1 DF format

The format of the non-data-replacement DF header is shown in Table 1; each DF header contains
the following information:

Word 0 – A fixed synchronization word (value not yet determined).
Word 1

Bits 31-16: User specified (e.g. station ID)
Bit 15: T – tvg data
Bits 14-0: DF # within second (starts at zero on second tick)

Words 2-3 – VLBA BCD Time code and 16-bit CRCC
 Bit 31 Bit 0

Word 0 Sync word (TBD)

Word 1 User-specified (16 bits) T Frame# within second (starting at 0)

Word 2 VLBA BCD Time Code Word 1 (‘JJJSSSSS’)

Word 3 VLBA BCD Time Code Word 2 (‘.SSSS’ plus 16-bit CRCC)

Table 1: Disk Frame Header format
Figure 1: Disk Frame Header format [3]

Looking at the composition of the header we can find a useful sync word at the beginning

(ABADDEED), followed by the frame number within second, which depends on the sampling

rate decided for the observation.

There is a sensitive bit that follows the frame number section in Figure 1 marked as T which

signals the presence of the Test Vector Generator, random noise produced by the formatter to

test the hardware. The presence of this bit has proved difficult to manage in recent times because

most correlators have been programmed to discard such data, whereas it is occasionally included

into the frame number section like when the sampling rate of the VLBI experiment rises over 2

Gbit/s.

3

The last two words of the Mark5B header are composed by a 4 bytes time code where the first

three numbers represent a shortened Modified Julian Date day (JJJ) and the last five numbers

the second of the day starting from 0 at midnight (SSSSS). The following word contains the

fractional part of the second (.SSSS)1and 2 bytes of CRCC (usually marked as zeros).

2.1 MARK5B data format on the network

In order to transmit Mark5B data packets on a TCP/IP network in UDP mode, a Fila10G

board splits the 10000 bytes Mark5B frame into two 5008 UDP packets, preceded by a Packet

Serial Number (PSN). The serial number is identical for the two packets, though only the first

one contains the header. It is usually the task of the recorder program to discard single packets

or in case of a successful transmission, to join them together and write the reconstructed frame

to disk.

This design complicates the analysis of the header, in this case the sync word in the Mark5B

header helps to determine whether the packet contains a valid header or not.

Example: FiLa10G settings

Mark5B
header Mark5B data

16 10000

IPv4 UDP

20 8 8

P
S

N

Mark5B
header

5008

IPv4 UDP

20 8 8

P
S

N

5008

do not do PSN processing:
 packet=36:0:5008:0:0

Figure 2: Mark5B network data packets as produced by a Fila10G formatter board

1When using a Fila10G formatter, in anticipation of the VDIF design, the fractional part of the second is

absent, usually marked as zeros. It is thought to be sufficient to use the frame counter to determine the fractional

part of the second. This is not that case when the formatter is a Mark5B recorder, which fulfills the complete

standard and marks the fractional part of the second according to the connected PPS (Pulse Per Second) from

a Maser clock

4

Figure 3: A Fila10G (First - last) external board

3 VDIF6. Data Frame Header

The standard 32-byte VDIF Data Frame Header is shown in Figure 3.
 Bit 31 (MSB) Bit 0 (LSB)

 Byte 3 Byte 2 Byte 1 Byte 0

Word 0 I1 L1 Seconds from reference epoch30
Word 1 Un-

assigned2 Ref Epoch6 Data Frame # within second24

Word 2 V3 log2(#chns)5 Data Frame length (units of 8 bytes)24
Word 3 C1 bits/sample-15 Thread ID10 Station ID16
Word 4 EDV8 Extended User Data24
Word 5 Extended User Data32
Word 6 Extended User Data32
Word 7 Extended User Data32

Figure 3: VDIF Data Frame Header format; subscripts are field lengths in bits;
byte #s indicate relative byte address within 32-bit word (little endian format)

The words within the Data Frame Header are assigned as follows:
Word 0

Bit 31: Invalid data (i.e. data in this Data Frame has been tagged Invalid by the data
 source); valid=0, invalid=1
Bit 30: Legacy mode; see Note 1

‘0’ - standard 32-byte VDIF Data Frame header
‘1’ – legacy header-length’ mode; Words 4-7 omitted from header

Bits 29-0: Seconds from reference epoch; see Note 2
Word 1

Bits 31-30: Unassigned (should be set to all ‘0’s)
Bits 29-24: Reference Epoch for second count; see Note 2
Bits 23-0: Data Frame # within second, starting at zero; must be integral number of

Data Frames per second
Word 2

Bits 31-29: VDIF version number; see Note 3
Bits 28-24: log2(#channels in Data Array); #chans must be power of 2; see Note 4
Bits 23-0: Data Frame length (including header) in units of 8 bytes; see Note 5

Word 3
Bit 31: Data type; see Note 6

‘0’ – Real data
‘1’ – Complex data

Bits 30-26: #bits/sample-1 (32 bits/sample max); see Note 7
Bits 25-16: Thread ID (0 to 1023)
Bits 15-0: Station ID; see Note 8

Words 4-7
Extended User Data: Format and interpretation of extended user data is indicated by
the value of Extended Data Version (EDV) in Word 4 Bits 31-24; see Note 9

 5

Figure 4: VDIF Data Frame Header format; subscripts are field lengths in bits; byte numbers indicate

relative byte address within 32-bit word in little endian format [1]

The VDIF data format has been designed to overcome all the problems previously mentioned.

Every packet that is sent to the network, or reordered, contains an header and in Word 2 is

defined the data frame length which one would sensibly limit to fit into a Jumbo frame.

Timestamp inside the header has seen an evident change from the Mark5B format. Now

there is a 6 bit Reference Epoch counter in Word 1 (Ref Epoch) that is incremented every six

months starting from year 2000 (0), so the seconds now do not reset at midnight every day, but

instead begin from the reference epoch considered. Seconds can be found in Word 0 and even if

this design may not be thought as straightforward as the previous one, it prevents leap second

problems.

5

A data frame number is still present to mark the sampling rate of the experiment and

determine the fractional part of the second. In this case more room has been allowed (3 bytes)

to fulfill the requirements of higher rates.

3.1 VTP - VDIF transport protocol

In addition to this design there are 8 bytes that come before the VDIF header, similar to

the Mark5B PSN previously mentioned. When using a Fila10G formatter in recent firmare

implementations the VTP ’pre-header’ is a counter that starts the moment the Fila10G begins

sending data. This may be helpful in case of missing packets or packets that come in wrong

ordering due to the stateless UDP transfer protocol.

 3

7. When a sink receives VDIF data streams from multiple sources, each stream
 aneeds to be sent to a unique destin tion port on the sink. The sequence

number order should be unique for each stream.
 8. The stream port number should be negotiated between source and sink.
Standard port numbers starting at 29000 should be used as a default.

9. It is recommended (but not mandatory) than a VTP/UDP data sink generates
periodic ACK (acknowledgement) messages. The structure of these ACK
messages is defined below.

A V /TP UDP source should be mindful of the following:
1. It is important to properly fill in the Ethernet, IP and UDP headers with

correct source and destination ports, IP addresses, and MAC addresses. How
these values are determined will be implementation dependent.

2. UDP allows datagrams up to 64kB, which is larger than Ethernet frame size.
VTP/UDP allows VDIF frames that are fragmented over multiple Ethernet
frames (but within a single UDP datagram). However such usage is
iscouraged and generally a VTP/UDP source should ensure the UDP
atagram fits within the underlying Ethernet MTU.
d
d

64 bit sequence number

VDIF Frame

F

igure 1: VTP/UDP packet structure

Raw Ethernet
UDP formatted packets are always preferred over raw Ethernet packets, as they are
more flexible, allowing for intermediate routers etc. Use of raw Ethernet is to be
discouraged. However in some cases raw Ethernet frames may be required or
preferred. The basic use of VTP/Ethernet should be the same as for VTP/UDP
spe iecif d above except:

1. When receiving VTP streams from multiple sources, only a single stream per
source is supported and the source MAC address will be used on the sink to
separate the streams.

VTP Examples
The following are some example scenarios where VTP would be used.

Figure 5: VTP/UDP packet structure [2]

4 timeServerClient

The scripts architecture implemented to analyze VLBI data packets coming from a network

stream and verify time coherence between various streams begins on the client side.

timeServerClient is meant to capture the streams coming from the network, produced by a

formatter either in Mark5B or VDIF mode . In a Mark5B stream it is necessary to first identify

the packets containing headers, then detect whether the header contains TVG bit to give out a

warning.

This preliminary Mark5B header analysis causes a bit of CPU load on the machine, though

it is necessary in order to prevent unwanted interferences by the TVG bit. In fact the MJD

+ seconds bits of the header may be interpreted a signed or unsigned int whether the TVG is

present or not.

If the TVG bit is detected, then the 2 bytes containing the MJD and seconds are masked

and the result is passed on to the timeServerClient UDP sender thread.

In case VDIF packets are received from a formatter, the 3 VDIF bytes representing seconds

stripped by it timeServerClient won’t need any analysis, but will be simply passed on.

In either case, once the program is started, the user will receive an immediate feedback

about the first valid packet captured by timeServeClient containing the seconds information,

an eventual TVG presence warning when in Mark5B mode and the selected IP destination of

the packets including port number.

The UDP sender thread is sending the second bytes to a timeServerVlbi instance only when

the frame number in any kind of header is marked as zero, which means at the beginning of

6

each second. In this way the workload is balanced across each machine that receives VLBI UDP

streams. Multiple timeServerClient instances could theoretically be run on the same machine

if receiving and sending ports are differentiated, though this is not advisable.

4.1 Usage

usage: timeServerClient.py [-h] [-p UDP_PORT] [-S SRV_IP] [-P SRV_PORT] [-v]

timeServerClient is the client part of timeServerVlbi that analyses packets

coming from a formatter.

optional arguments:

-h, --help show this help message and exit

-p UDP_PORT, --port UDP_PORT

port listening for formatter datastream

-S SRV_IP, --severip SRV_IP

time server ip

-P SRV_PORT, --serverport SRV_PORT

time server port

-v, --vdif VDIF mode

5 timeServerVlbi

A timeServerVlbi instance could be run on any machine receiving a VLBI data stream , though

depending on the experiment sampling could be wise to place it onto a third machine, preferably

connected with the other machines receiving data streams through an InfiniBand connection

that guarantees low latency.

The script main purpose is to log the seconds received from each macine running time-

ServerClient and produce information whether there are time slips on the formatters or any

other kind of useful information that could be extrapolated.

A user can automatically set multiple UDP receiving threads depending on the number of

data streams to be confronted. The script has been tested up to three machines. Comparing a

high number of data streams could potentially strain threads, though given the present number

of VLBI antennas it is at present a remote hypothesis.

The main program thread analyses the VLBI seconds packets received from various time-

ServerClient instances by marking their arrival time at the machine clock precision (microsec-

onds). Two queues are set up for each stream instance, one for the second bytes received and

the other for the arrival time of the packet. These queues are then confronted, first if they are

the same size, then if there are differences they are emptied. This can occur if there are network

problems, like packets getting lost, or disordered. When queues are all the same dimension,

and there are still differences in header seconds arriving in timeServerVlbi queues, then they

are logged as a time slip error from the formatter.

7

This analysis implies that the formatter streaming source, like a Fila10G board, is close

enough to be recorded within a second.

5.1 Usage

usage: timeServerVlbi.py [-h] [-i HOST] [-c UDP_IPS] [-p UDP_PORTS] [-l LOG]

[-v]

Instructions for timeServer

optional arguments:

-h, --help show this help message and exit

-i HOST, --ip HOST your host IP

-c UDP_IPS, --client UDP_IPS

add client IPs MIN 2 MAX 4 eg : [-c 192.168.1.10 -c

192.168.1.11 ...]

-p UDP_PORTS, --port UDP_PORTS

add client ports MIN 2 MAX 4 eg : [-p 5001 -p 5002

...] make sure they MATCH the order of the IPs

-l LOG, --log LOG log path/file name

-v, --vdif VDIF mode

8

in�niband

timeServerVlbi.py

timeServerClient.py

in�niband

Mark5B (network) / VDIF datastreams

Formatter

timeServerClient.py timeServerClient.py

Formatter

Figure 6: Working schema

9

6 Conclusions

The scripts development was dictated by the necessity to verify in real time the time synchro-

nization of various Fila10G boards that still at the time of writing this paper need constant

checking due to unexpected behavior. Time sync is still a manual task to be performed by opera-

tors before experiments, though an introduction of a GPS receiver to automatically synchronize

time on the boards may mitigate the problem.

On a second instance scripts have been adapted to be used by a general public, using any

kind of formatter as long as it produces a valid VDIF output format. This format is still

undergoing minor revisions and adjustments, like the introduction of the VTP counter which

was not found on earlier versions of the Fila10G firmware, so the scripts may need to be adapted

to future changes of the formatter output.

An interesting side usage of the scripts is to check network latency, as the log file reports the

arrival time of packets coming from different sources. For instance we have found that Medicina

has a network latency of ˜0.0006 seconds and Noto ˜0.017 seconds, when receiving packets in

Bologna.

The scripts package is going to be integrated into the DiFX distribution and can also be

found at this address:

http://vlbi-mgr.ira.inaf.it/timeserver/TimeServer.tar.gz

10

References

[1] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vlbi data interchange

format (vdif) specification. Technical Report 1.1.1, MIT Haystack Observatory and JIVE

and CSIRO/ATNF and NICT, http://www.vlbi.org/vdif/, June 2009.

[2] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vtp: Vdif transport

protocol. Technical Report 1.0.0, http://www.vlbi.org/, October 2013.

[3] Alan Whitney and Roger Cappallo. Mark5 memo 019. Technical Report 19, MIT,

HAYSTACK OBSERVATORY, http://www.haystack.mit.edu/, 2004.

11

