
VLBI setups for correlation

using DBBC backends, FILA10G formatters and

VDIF data format

Matteo Stagni

June 7, 2016

IRA 495/16

Referee: S. Buttaccio, M.Nanni

Abstract

A description of the current setups used in VLBI introducing hardware (DBBCs

and Fila10G) and software (VDIF data format) changes. This paper provides the

correlator point of view in changes applied to VEX files and in data formats when

dealing with VLBI experiments of a variety of possible Astronomical and Geodetic

setups.

1

Contents

1 Introduction 3

2 MARK5B 3

2.1 MARK5B data format on the network 4

3 VDIF 6

3.1 VTP - VDIF transport protocol . 6

4 VEX 7

5 DBBC correlation setups 8

5.1 DBBC + Mark5B data format . 9

5.2 DBBC + VDIF data format . 11

6 Conclusions 14

2

1 Introduction

Since the introduction of software correlation in our institute in 2013, there has been a

series of difficulties in interpreting both the hardware and software VLBI setups. The

primary cause could be addressed to the newly introduced backends (DBBC) and format-

ters (FILA10G) at the Italian antennas (Medicina - Noto and Sardinia Radio Telescope),

because this change affected many facets of the pipeline production of VLBI data, in-

cluding the production of schedules through SCHED software and the way to interpret

these changes in a software correlator like DiFX.

Even though one of the main purposes of the new backends is to introduce a higher

degree of flexibility in the setups, like introducing higher data rates of observing, there

has been a dramatic impact on the failure rate of observations, since the scheduling

software SCHED and SKED were not able to cope with these rapid changes and as a

result the observing schedules produced were (and still are) describing setups that do not

exist anymore and are completely overridden by the present hardware. Moreover these

changes require to match the way software correlators interpret data, thus incurring in

minor and major non-documented software tweaks both on the production of schedule

files and the way a correlator processes the data produced by the antennas.

In this paper the aim is to document in the clearest way the most common pitfalls

the author has encountered during correlation issues and the solutions adopted once the

setups were interpreted correctly.

In describing all the known setups at present the goal is to establish some major

guidelines and best practices at least for all VLBI operations in Italy.

2 MARK5B

The Mark5B header format is the de-facto present standard when dealing with VLBI

data. It is supported by a number of recorders and correlators, though its dimension was

not designed with network capabilities in mind. Its biggest downside lays in its frame

length, 10000 bytes which cannot be supported by standard network appliances which

are limited to Jumbo frames up to a size of 9000 bytes.

Looking at the composition of the header we can find a useful sync word at the

beginning (ABADDEED), followed by the frame number within second, which depends

on the sampling rate decided for the observation.

There is a sensitive bit that follows the frame number section in Figure 1 marked as T

which signals the presence of the Test Vector Generator, random noise produced by the

formatter to test the hardware. The presence of this bit has proved difficult to manage

in recent times because most correlators have been programmed to discard such data,

3

019.doc 11/29/2004 1

MARK 5 MEMO #019

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

HAYSTACK OBSERVATORY

WESTFORD, MASSACHUSETTS 01886

 Telephone: 978-692-4764
 Fax: 781-981-0590

24 November 2004

TO: Mark 5B development group

FROM: Alan R. Whitney and Roger J. Cappallo

SUBJECT: Mark 5B design specifications

1. StreamStor disk format

Within each scan, the data on the SS disk are divided into equal-length ‘disk frames’ (DFs).
Each DF carries a frame header of four 32-bit words followed by 2500 32-bit words of data.
There is always a DF boundary at each UT second tick.

Recording starts on the first DOT second tick after a VSI-S ‘receive=start’ command is issued,
so each scan always begin with a DF header. Recording stops on the first DOT second tick after
a VSI-S ‘receive=stop’ command is issued.

1.1 DF format

The format of the non-data-replacement DF header is shown in Table 1; each DF header contains
the following information:

Word 0 – A fixed synchronization word (value not yet determined).
Word 1

Bits 31-16: User specified (e.g. station ID)
Bit 15: T – tvg data
Bits 14-0: DF # within second (starts at zero on second tick)

Words 2-3 – VLBA BCD Time code and 16-bit CRCC
 Bit 31 Bit 0

Word 0 Sync word (TBD)

Word 1 User-specified (16 bits) T Frame# within second (starting at 0)

Word 2 VLBA BCD Time Code Word 1 (‘JJJSSSSS’)

Word 3 VLBA BCD Time Code Word 2 (‘.SSSS’ plus 16-bit CRCC)

Table 1: Disk Frame Header format
Figure 1: Disk Frame Header format [9]

whereas it is occasionally included into the frame number section like when the sampling

rate of the VLBI experiment rises over 2 Gbit/s.

The last two words of the Mark5B header are composed by a 4 bytes time code where

the first three numbers represent a shortened Modified Julian Date day (JJJ) and the last

five numbers the second of the day starting from 0 at midnight (SSSSS). The following

word contains the fractional part of the second (.SSSS)1and 2 bytes of CRCC (usually

marked as zeros).

2.1 MARK5B data format on the network

In order to transmit Mark5B data packets on a TCP/IP network in UDP mode, a Fila10G

board splits the 10000 bytes Mark5B frame into two 5008 UDP packets, preceded by a

Packet Serial Number (PSN). The serial number is identical for the two packets, though

only the first one contains the header. It is usually the task of the recorder program to

discard single packets or in case of a successful transmission, to join them together and

write the reconstructed frame to disk.

This design complicates the analysis of the header, in this case the sync word in the

Mark5B header helps to determine whether the packet contains a valid header or not.

1When using a Fila10G formatter, in anticipation of the VDIF design, the fractional part of the second

is absent, usually marked as zeros. It is thought to be sufficient to use the frame counter to determine

the fractional part of the second. This is not that case when the formatter is a Mark5B recorder, which

fulfills the complete standard and marks the fractional part of the second according to the connected

PPS (Pulse Per Second) from a Maser clock

4

Example: FiLa10G settings

Mark5B
header Mark5B data

16 10000

IPv4 UDP

20 8 8

P
S

N

Mark5B
header

5008

IPv4 UDP

20 8 8

P
S

N

5008

do not do PSN processing:
 packet=36:0:5008:0:0

Figure 2: Mark5B network data packets as produced by a Fila10G formatter board

Figure 3: A Fila10G (First - last) external board

5

3 VDIF6. Data Frame Header

The standard 32-byte VDIF Data Frame Header is shown in Figure 3.
 Bit 31 (MSB) Bit 0 (LSB)

 Byte 3 Byte 2 Byte 1 Byte 0

Word 0 I1 L1 Seconds from reference epoch30
Word 1 Un-

assigned2 Ref Epoch6 Data Frame # within second24

Word 2 V3 log2(#chns)5 Data Frame length (units of 8 bytes)24
Word 3 C1 bits/sample-15 Thread ID10 Station ID16
Word 4 EDV8 Extended User Data24
Word 5 Extended User Data32
Word 6 Extended User Data32
Word 7 Extended User Data32

Figure 3: VDIF Data Frame Header format; subscripts are field lengths in bits;
byte #s indicate relative byte address within 32-bit word (little endian format)

The words within the Data Frame Header are assigned as follows:
Word 0

Bit 31: Invalid data (i.e. data in this Data Frame has been tagged Invalid by the data
 source); valid=0, invalid=1
Bit 30: Legacy mode; see Note 1

‘0’ - standard 32-byte VDIF Data Frame header
‘1’ – legacy header-length’ mode; Words 4-7 omitted from header

Bits 29-0: Seconds from reference epoch; see Note 2
Word 1

Bits 31-30: Unassigned (should be set to all ‘0’s)
Bits 29-24: Reference Epoch for second count; see Note 2
Bits 23-0: Data Frame # within second, starting at zero; must be integral number of

Data Frames per second
Word 2

Bits 31-29: VDIF version number; see Note 3
Bits 28-24: log2(#channels in Data Array); #chans must be power of 2; see Note 4
Bits 23-0: Data Frame length (including header) in units of 8 bytes; see Note 5

Word 3
Bit 31: Data type; see Note 6

‘0’ – Real data
‘1’ – Complex data

Bits 30-26: #bits/sample-1 (32 bits/sample max); see Note 7
Bits 25-16: Thread ID (0 to 1023)
Bits 15-0: Station ID; see Note 8

Words 4-7
Extended User Data: Format and interpretation of extended user data is indicated by
the value of Extended Data Version (EDV) in Word 4 Bits 31-24; see Note 9

 5

Figure 4: VDIF Data Frame Header format; subscripts are field lengths in bits; byte numbers

indicate relative byte address within 32-bit word in little endian format [5]

The VDIF data format has been designed to overcome all the problems previously

mentioned. Every packet that is sent to the network, or reordered, contains an header

and in Word 2 is defined the data frame length which one would sensibly limit to fit into

a Jumbo frame.

Timestamp inside the header has seen an evident change from the Mark5B format.

Now there is a 6 bit Reference Epoch counter in Word 1 (Ref Epoch) that is incremented

every six months starting from year 2000 (0), so the seconds now do not reset at midnight

every day, but instead begin from the reference epoch considered. Seconds can be found

in Word 0 and even if this design may not be thought as straightforward as the previous

one, it prevents leap second problems.

A data frame number is still present to mark the sampling rate of the experiment and

determine the fractional part of the second. In this case more room has been allowed (3

bytes) to fulfill the requirements of higher rates.

3.1 VTP - VDIF transport protocol

In addition to this design there are 8 bytes that come before the VDIF header, similar

to the Mark5B PSN previously mentioned. When using a Fila10G formatter in recent

firmare implementations the VTP ’pre-header’ is a counter that starts the moment the

Fila10G begins sending data. This may be helpful in case of missing packets or packets

that come in wrong ordering due to the stateless UDP transfer protocol.

6

 3

7. When a sink receives VDIF data streams from multiple sources, each stream
 aneeds to be sent to a unique destin tion port on the sink. The sequence

number order should be unique for each stream.
 8. The stream port number should be negotiated between source and sink.
Standard port numbers starting at 29000 should be used as a default.

9. It is recommended (but not mandatory) than a VTP/UDP data sink generates
periodic ACK (acknowledgement) messages. The structure of these ACK
messages is defined below.

A V /TP UDP source should be mindful of the following:
1. It is important to properly fill in the Ethernet, IP and UDP headers with

correct source and destination ports, IP addresses, and MAC addresses. How
these values are determined will be implementation dependent.

2. UDP allows datagrams up to 64kB, which is larger than Ethernet frame size.
VTP/UDP allows VDIF frames that are fragmented over multiple Ethernet
frames (but within a single UDP datagram). However such usage is
iscouraged and generally a VTP/UDP source should ensure the UDP
atagram fits within the underlying Ethernet MTU.
d
d

64 bit sequence number

VDIF Frame

F

igure 1: VTP/UDP packet structure

Raw Ethernet
UDP formatted packets are always preferred over raw Ethernet packets, as they are
more flexible, allowing for intermediate routers etc. Use of raw Ethernet is to be
discouraged. However in some cases raw Ethernet frames may be required or
preferred. The basic use of VTP/Ethernet should be the same as for VTP/UDP
spe iecif d above except:

1. When receiving VTP streams from multiple sources, only a single stream per
source is supported and the source MAC address will be used on the sink to
separate the streams.

VTP Examples
The following are some example scenarios where VTP would be used.

Figure 5: VTP/UDP packet structure [6]

4 VEX

The ’VEX-file’ format (VEX = ’VLBI Experiment’) has been invented to prescribe a

complete description of a VLBI experiment, including scheduling, data-taking and corre-

lation. This includes all setup and configuration information, as well as the schedule of

observations. VEX is designed to be independent of any particular VLBI data-acquisition

system or correlator, and is expandible to accommodate new equipment, recording and

correlation modes. Every attempt has been made to consider the requirements and con-

cerns of both the astronomy and geodetic VLBI communities in the construction of the

VEX format [1].

VLBI data formats at present are multiplexed. This is an artifact from the time when

data were recorded onto magnetic tapes. The tape was divided into tracks and each

sub-band was split over one or more tracks. In principle the way these sub-bands are

divided over the tracks is arbitrary and the exact mapping is recorded in the VEX file.

The concept of a track is converted to a disk based format by packing all tracks into

a stream of input words. The size of each data word in bits is equal to the number of

tracks, with a logical one-to-one mapping of bit location inside a data word to a track

number. Currently only the VDIF format [5] offers the possibility to record each sub-

band in a separate data frame and therefore avoid the need for corner turning, although

VDIF supports multiplexing as well [4].

The present major limitation of the VEX file is based on its skeleton that was designed

when VLBA backends were dominant and tapes were the common means of recording

data at high rates. In fact since 2009 a committee was established in the VLBI community

to overcome the intrinsic limitations of VEX files in respect to modern DBEs (Digital

Back Ends) and move to VEX2 file format [3]. The current transition status to VEX2

is unknown, so to accomodate new definitions of hardware and setups most correlation

softwares have established hacks that overcome these information gaps.

The following sections explain in detail how these hacks work when a DBBC backend

is used and either Mark5B or VDIF data format is chosen.

7

5 DBBC correlation setups

The DBBC backend setups are shaped after what is described as the VSI (VLBI Standard

Interface) that organizes how the data is sampled and decoded (playback) at the correlator

[8]. The principle of the VSI ordering of samples could be described by the following

”algorithm”:

first Upper Side Band channels

increasing BBC number

then Lower Side Band channels

increasing BBC number

which is somehow ’broken’ and ’fixed’ by SCHED software when describing a VLBA

setup in a VEX file (see Table 1). On the contrary the situation described in the ’algo-

rithm’ has to be strictly applied when VDIF data output is chosen for the experiment

(see Table 2), as there are less means to correct the setup. The meaning of ’breaking’ and

’fixing’ the ’algorithm’ is based on the fact that setups are described and linked together

in multiple VEX block keywords. To understand a VLBI setup in VEX one must refer

to the $FREQ, $BBC, $IF and $TRACK blocks, being $FREQ the most descriptive of

all blocks and providing the right connections between all of them.

The most common hack to fit a backend that diverges from how the VLBA backend

behaves is to change the $TRACK block in the VEX file, though when VDIF data got

into use this has become a pitfall because data could not be described as MARK5B format

anymore. To avoid the issue other means of describing the correct setups have been put

in place, essentially by re-programming software correlators.

The subdivision of the sky frequency into channels for the DBBC is carried out in

two different so-called ’personalities’ - analogue to digital conversion of the DBBC which

are DDC (Digital Down Conversion to Base Band of Independent Channels) and PFB

(Multi Equispaced Channel Conversion to Base Band Polyphase Filter Bank) [7]. The

latter has only been recently tested in VLBI to produce a better bandwidth sampling

using overlapping channels. There is a forthcoming ’personality in the future DBBC2010

that is called DSC (Direct Sampling Conversion) where all the bandwidth of the receiver

will not be sub-divided into channels and will require further adjustments when preparing

a VEX file.

The commonly used DDC ’personality’ in VLBI can support up to 4 IF inputs on the

DBBC that take in 512 MHz each, namely 0-512 MHz (A), 512-1024 MHz (B), 1024-1536

MHZ (C) and 1536-2048 (D). The 4 IF can be sub-divided into up to 16 BBC channels

from 1 to 16MHz or from 2 to 32 MHz, depending on the DBBC firmware. This setup

flexibility has proven difficult to be rapidly implemented in SCHED software to produce

a correct VEX file.

8

The setup that the DBBC advertises are GEO, ASTRO, ASTRO2, WASTRO, TEST,

LBA, 8bit. These setups or so-called ’VSI modes’ are a way to code the correct mapping

of channels and bbcs. However, given the flexibility of the backend, these could be easily

overridden. The problem that arises in this case is the impossibility to correctly match

the information provided by a VEX file, unless asking each station to provide the setup

in use.

5.1 DBBC + Mark5B data format

When a DBBC is connected to either a FILA10G formatter set in Mark5B data format or

directly through a VSI cable to a Mark5B recorder and formatter, according to the setup

chosen the $FREQ block of the VEX produced by SCHED software will look something

like what is shown in Table 1. As mentioned before this breaks the VSI ’algorithm’

standard because it is how a VLBA backend would organize the band conversion and

channels sub-division. However in this case the ’hack’ used to make ends meet is to re-

organize the ordering in a correct manner by re-writing the legacy $TRACKS block that

describes how bits were written on tapes - now on disks.

Fila10G
formatter

DBBC

RpolLpol RpolLpol

DBBCDDC takes place

8 BBC created

divided in 16 channels
(U & L sidebands)

become 32 bit words in VSI

Fila10G
formatter

Correlation

Network Network

Storage Storage

Mark5B (network) / VDIF datastreams

Figure 6: Data sampling pipeline from antennas through DBBCs and Fila10G formatters to

correlator. This provides a behavior example of DDC ASTRO/ASTRO2/WASTRO DBBC

personalities.

9

ASTRO MARK5B ASTRO2 MARK5B ASTRO3 MARK5B GEO MARK5B

CH Sideband BBC Pol CH Sideband BBC Pol CH Sideband BBC Pol CH Sideband BBC Pol

1 L BBC1 R 1 L BBC1 R 1 L BBC1 R 1 U BBC1 R

2 L BBC5 L 2 L BBC9 L 2 L BBC9 L 2 L BBC1 R

3 U BBC1 R 3 U BBC1 R 3 U BBC1 R 3 U BBC2 R

4 U BBC5 L 4 U BBC9 L 4 U BBC9 L 4 U BBC3 R

5 L BBC2 R 5 L BBC2 R 5 L BBC3 R 5 U BBC4 R

6 L BBC6 L 6 L BBC10 L 6 L BBC11 L 6 U BBC5 R

7 U BBC2 R 7 U BBC2 R 7 U BBC3 R 7 U BBC6 R

8 U BBC6 L 8 U BBC10 L 8 U BBC11 L 8 U BBC7 R

9 L BBC3 R 9 L BBC3 R 9 L BBC5 R 9 U BBC8 R

10 L BBC7 L 10 L BBC11 L 10 L BBC13 L 10 L BBC8 R

11 U BBC3 R 11 U BBC3 R 11 U BBC5 R 11 U BBC9 R

12 U BBC7 L 12 U BBC11 L 12 U BBC13 L 12 U BBC10 R

13 L BBC4 R 13 L BBC4 R 13 L BBC7 R 13 U BBC11 R

14 L BBC8 L 14 L BBC12 L 14 L BBC17 L 14 U BBC12 R

15 U BBC4 R 15 U BBC4 R 15 U BBC7 R 15 U BBC13 R

16 U BBC8 L 16 U BBC12 L 16 U BBC15 L 16 U BBC14 R

Table 1: Channels, BBCs, Sidebands and Polarization assignments when using the several ASTRO and the GEO setups on a DBBC when

Mark5B data format is selected

10

$TRACKS

* ASTRO

def MARK5B.16Ch2bit1to1;

* mode = 1 stations =Sr:Mc

* firmware_type = DBBC_DDC;

* format = MARK5B, and fan-out = 1

* mode requires 32.00Mb/s/tr; stations using disks

track_frame_format = MARK5B;

fanout_def = : &CH01 : sign : 1: 18;

fanout_def = : &CH01 : mag : 1: 19;

fanout_def = : &CH02 : sign : 1: 26;

fanout_def = : &CH02 : mag : 1: 27;

fanout_def = : &CH03 : sign : 1: 2;

fanout_def = : &CH03 : mag : 1: 3;

fanout_def = : &CH04 : sign : 1: 10;

fanout_def = : &CH04 : mag : 1: 11;

fanout_def = : &CH05 : sign : 1: 20;

fanout_def = : &CH05 : mag : 1: 21;

fanout_def = : &CH06 : sign : 1: 28;

fanout_def = : &CH06 : mag : 1: 29;

fanout_def = : &CH07 : sign : 1: 4;

fanout_def = : &CH07 : mag : 1: 5;

fanout_def = : &CH08 : sign : 1: 12;

fanout_def = : &CH08 : mag : 1: 13;

fanout_def = : &CH09 : sign : 1: 22;

fanout_def = : &CH09 : mag : 1: 23;

fanout_def = : &CH10 : sign : 1: 30;

fanout_def = : &CH10 : mag : 1: 31;

fanout_def = : &CH11 : sign : 1: 6;

fanout_def = : &CH11 : mag : 1: 7;

fanout_def = : &CH12 : sign : 1: 14;

fanout_def = : &CH12 : mag : 1: 15;

fanout_def = : &CH13 : sign : 1: 24;

fanout_def = : &CH13 : mag : 1: 25;

fanout_def = : &CH14 : sign : 1: 32;

fanout_def = : &CH14 : mag : 1: 33;

fanout_def = : &CH15 : sign : 1: 8;

fanout_def = : &CH15 : mag : 1: 9;

fanout_def = : &CH16 : sign : 1: 16;

fanout_def = : &CH16 : mag : 1: 17;

enddef;

*==

* GEO

def Mk341_2f_1b-SX02;

fanout_def = A : &CH01 : sign : 1 : 02 : 04;

fanout_def = A : &CH02 : sign : 1 : 06 : 08;

fanout_def = A : &CH03 : sign : 1 : 10 : 12;

fanout_def = A : &CH04 : sign : 1 : 14 : 16;

fanout_def = A : &CH05 : sign : 1 : 18 : 20;

fanout_def = A : &CH06 : sign : 1 : 22 : 24;

fanout_def = A : &CH07 : sign : 1 : 26 : 28;

fanout_def = A : &CH08 : sign : 1 : 30 : 32;

fanout_def = A : &CH09 : sign : 1 : 03 : 05;

fanout_def = A : &CH10 : sign : 1 : 07 : 09;

fanout_def = A : &CH11 : sign : 1 : 11 : 13;

fanout_def = A : &CH12 : sign : 1 : 15 : 17;

fanout_def = A : &CH13 : sign : 1 : 19 : 21;

fanout_def = A : &CH14 : sign : 1 : 23 : 25;

fanout_def = A : &CH15 : sign : 1 : 27 : 29;

fanout_def = A : &CH16 : sign : 1 : 31 : 33;

enddef;

The examples of $TRACKS provided encompasses the ASTRO and GEO setups. It

is worthwhile noting that whenever the LO (Local Oscillator) frequency is above the

observed sky frequency an inversion between the Lower Side Band and Upper Side Band

occurs in the $TRACKS fanout def bits. The odd numbering of the bits starting from 2

depends on the first 2 bits used by the tape controllers.

5.2 DBBC + VDIF data format

In case of VDIF data being selected on a FILA10G formatter, the $FREQ block of VEX

must match the description provided in Table 2 when using DiFX software correlator [2].

In fact the hack that DiFX uses to supplement the lack of information provided for VDIF

data by SCHED is to only process what is written in the $FREQ block and do not bother

about what is written in the $TRACKS block. The SFXC [4] software correlator instead

relies on newly introduced blocks that bridge a gap between VEX and VEX2, namely

$BITSTREAMS and $THREADS that do the re-ordering of the incorrect information

provided by the $FREQ section in VLBA style.

11

ASTRO VDIF ASTRO2 VDIF ASTRO3 VDIF GEO VDIF

CH Sideband BBC Pol CH Sideband BBC Pol CH Sideband BBC Pol CH Sideband BBC Pol

1 U BBC1 R 1 U BBC1 R 1 U BBC1 R 1 U BBC1 R

2 U BBC2 R 2 U BBC2 R 2 U BBC3 R 2 U BBC2 R

3 U BBC3 R 3 U BBC3 R 3 U BBC5 R 3 U BBC3 R

4 U BBC4 R 4 U BBC4 R 4 U BBC7 R 4 U BBC4 R

5 U BBC5 L 5 U BBC9 L 5 U BBC9 L 5 U BBC5 R

6 U BBC6 L 6 U BBC10 L 6 U BBC11 L 6 U BBC6 R

7 U BBC7 L 7 U BBC11 L 7 U BBC13 L 7 U BBC7 R

8 U BBC8 L 8 U BBC12 L 8 U BBC15 L 8 U BBC8 R

9 L BBC1 R 9 L BBC1 R 9 L BBC1 R 9 L BBC1 R

10 L BBC2 R 10 L BBC2 R 10 L BBC3 R 10 L BBC8 R

11 L BBC3 R 11 L BBC3 R 11 L BBC5 R 11 U BBC9 R

12 L BBC4 R 12 L BBC4 R 12 L BBC7 R 12 U BBC10 R

13 L BBC5 L 13 L BBC9 L 13 L BBC9 L 13 U BBC11 R

14 L BBC6 L 14 L BBC10 L 14 L BBC11 L 14 U BBC12 R

15 L BBC7 L 15 L BBC11 L 15 L BBC13 L 15 U BBC13 R

16 L BBC8 L 16 L BBC12 L 16 L BBC15 L 16 U BBC14 R

Table 2: Channels, BBCs, Sidebands and Polarization assignments when using the several ASTRO and the GEO setups on a DBBC when

VDIF data format is selected

12

*==

* DEFINITION OF VDIF TRACK BLOCK USING DIFX

*==

$TRACKS

def VDIF;

track_frame_format = VDIF/8032/2;

enddef;

*==

* DEFINITION OF VDIF THREAD BLOCK USING SFXC

*==

$THREADS;

*** single-thread set-up

*** FORMAT: last field = total bit-rate over all threads

*** THREAD: thrd.ID : backend # : recorder # : data-rate of thread : N_chan : N_bit : : : bytes/packet ;

def VDIF512;

format = VDIF : : 512;

thread = 0 : 1 : 1 : 512 : 16 : 2 : : : 8000;

channel = &CH01 : 0 : 8;

channel = &CH02 : 0 : 12;

channel = &CH03 : 0 : 0;

channel = &CH04 : 0 : 4;

channel = &CH05 : 0 : 9;

channel = &CH06 : 0 : 13;

channel = &CH07 : 0 : 1;

channel = &CH08 : 0 : 5;

channel = &CH09 : 0 : 10;

channel = &CH10 : 0 : 14;

channel = &CH11 : 0 : 2;

channel = &CH12 : 0 : 6;

channel = &CH13 : 0 : 11;

channel = &CH14 : 0 : 15;

channel = &CH15 : 0 : 3;

channel = &CH16 : 0 : 7;

enddef;

The examples provided of the VEX blocks describe what is needed by either DiFX

or SFXC to process VDIF data in a correct manner. DiFX requires only a definition of

the payload of the data excluding the header (8000) and the number of bits per sample

(2). SFXC instead uses a more articulated block $THREADS to reproduce what was

implemented to change the bits order in case of Mark5B data format in the $TRACKS

block. This is what actually could be required in case the future experiment will split

the bandwidth to be correlated across several correlation facilities.

13

6 Conclusions

The setups described in this paper are the product of several information sources including

email conversations, Haystack memos and HatLab papers. The effort infused is to better

document and pack together all available information in a more robust way.

VEX2 could be a solution to all the aforementioned problems, though a partial imple-

mentation exists at Jive for the SFXC software correlator, the effort to switch to VEX2

in SCHED seems far from being implemented.

The increasing bandwidth in observations imposes dire challenges in networks and

storage solutions.

The hope for the future is that during these times of transition in interferometrical

observations that are paving the way for future systems such as VGOS for Geodesy and

SKA for Astronomy, a better harmonization and coordination of the data production

pipeline is seriously taken into account. In fact ’traditional’ VLBI experiments could

provide many reliable solutions, testbeds and useful baselines during the time of transition

to such systems.

14

References

[1] Whitney Alan, Lonsdale Colin, Himwich Ed, Vandenberg Nancy,

van Langevelde Huib, Mujunen Ari, and Walker Craig. Vex file

definition/example. Technical Report 1.5b1, NASA/GSFC/NVI,

http://www.vlbi.org/vex/docs/vex%20definition%2015b1.pdf, January 2002.

[2] A. T. Deller, S. J. Tingay, M. Bailes, and C. West. Difx: A software correlator

for very long baseline interferometry using multiprocessor computing environments.

Publications of the Astronomical Society of the Pacific, 119(853):318, 2007.

[3] Himwich Ed. Vex definition. Technical Report 1.9996, NRAO,

https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2doc, February 2015.

[4] A. Keimpema, M. M. Kettenis, S. V. Pogrebenko, R. M. Campbell, G. Cimó, D. A.

Duev, B. Eldering, N. Kruithof, H. J. van Langevelde, D. Marchal, G. Molera Calvés,

H. Ozdemir, Z. Paragi, Y. Pidopryhora, A. Szomoru, and J. Yang. The sfxc software

correlator for very long baseline interferometry: algorithms and implementation. Ex-

perimental Astronomy, 39(2):259–279, 2015.

[5] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vlbi data inter-

change format (vdif) specification. Technical Report 1.1.1, MIT Haystack Observatory

and JIVE and CSIRO/ATNF and NICT, http://www.vlbi.org/vdif/, June 2009.

[6] Chris Phillips, Alan Whitney, Mamoru Sekido, and Mark Kettenis. Vtp: Vdif trans-

port protocol. Technical Report 1.0.0, http://www.vlbi.org/, October 2013.

[7] Gino Tuccari. http://www.evga.org/teaching/ivs school 2016/l03.pdf.

[8] Alan Whitney. http://www.haystack.mit.edu/tech/vlbi/mark5/mark5 memos/039.pdf.

[9] Alan Whitney and Roger Cappallo. Mark5 memo 019. Technical Report 19, MIT,

HAYSTACK OBSERVATORY, http://www.haystack.mit.edu/, 2004.

15

