Misure di prima luce in fuoco Gregoriano del Sardinia Radio Telescope

Orlati Andrea¹ Poppi Sergio² Migoni Carlo² Buttu Marco² Righini Simona¹

1 - I.N.A.F. Istituto di Radioastronomia. 2 – I.N.A.F. Osservatorio di Cagliari.

IRA 498-16

INTRODUZIONE		
DEFINIZIONI E ABBREVIAZIONI	3	
CONFIGURAZIONE D'ANTENNA		5
CONFIGURAZIONE FRONTEND/BACKEND		5
IL RICEVITORE 7GHZ		5
PUNTAMENTI MANUALI – ENCODER OFFSETS PUNTAMENTI MANUALI – STIMA DEL MODELLO DI PUNTAMENTO LA CURVA DI GUADAGNO STIMA DEL BEAMSIZE	5 6 9 10	
IL RICEVITORE 22GHZ		11
MODELLO DI PUNTAMENTO La curva di guadagno Stima del beamsize	11 14 15	
QUESITI APERTI		16

Introduzione

Il documento vuole dare conto dei risultati derivanti dalle misure di prima luce del Sardinia Radio Telescope in fuoco Gregoriano con i ricevitori 22GHz e 7GHz. L'attività in questione era prevista nel commissioning plan e prevedeva i seguenti steps:

- 1. Misura di stabilità dei ricevitori
- 2. Misura e verifica delle temperature di sistema
- 3. Puntamenti manuali
- 4. Modello di puntamento
- 5. Curva preliminare di guadagno

In questo documento si darà conto dei punti 3, 4 e 5. I dati riportati nel documento sono stati acquisiti durnate le settimane 32, 35 e 38 del 2012.

Definizioni e abbreviazioni

Activity Breakdown Structure
Antenna Control Unit
Alidade Equipment Room
Acceptance Integration Verification
Apex Equipment Room
Beam Wave Guide Room
Centro Elaborazione Dati
Cassetto Ottico
Control Room
Digital Base Band Converter
Drive Cabinet
Elevation Equipment Room
European VLBI Network
Fuoco Primario (davanti al subriflettore, ottica Gregoriana)
Fuoco Secondario (a livello del rotatore in fuoco Gregoriano)
Fuoco BWG
Fibra Ottica
Gruppi di Attività Integrata
Gregrian Focus Positioner
Sistema di Controllo (servo) del Rotatore dei Feed in Fuoco Gregoriano
Gruppo Generatori
Gregorian Receiver Positioner
Gregorian Receiver Room
Istituto di Radio Astronomia
Inter-Range Instrumentation Group time codes di tipo B
Local Area Network
Specchio riflettore primario
Subriflettore al vertice del quadrupode
Specchio selettore della focale BWG

M3R-CS	Sistema di Controllo del Rotatore dello specchio M3
M4	Specchio con focale per ricevitori intermedi
M5	Specchio con focale eguale a Medicina
MOM	Minute di Meeting
MS	Master Synthetiser
NC	Non Conformità
OAC	Osservatorio Astronomico di Cagliari
PCP	Principal Control Panel
PFP	Primary Focus Positioner
PFP-CS	Sistema di Controllo (servo) del Posizionatore Ricevitori in Fuoco Primario
PI	Principal Investigator
PLC	Programmable Logic Controller
PS	Project Scientist
RCP	Remote Control Panel, per il controllo remoto del servo principale
RF	Radio Frequenza
IF	Intermediate Frequency
RFI	Radio Frequency Interference
RJ45	Connettore cavi LAN in rame
RNC	Riunione di Non Conformità
SMCU	Servo Minor Control Unit
S/R	Subriflettore
SRP	Sub Reflector Positioner
SRP-CS	Sistema di Controllo (servo) del Posizionatore del Subriflettore
SRT	Sardinia Radio Telescope
ТВС	To Be Checked
TBD	To Be Defined
TBW	To Be Written
TF	Testa Fredda, ovvero refrigeratore criogenico dei dewar dei singoli ricevitori
T&F	Tempo e Frequenza, genera il riferimento di frequenza e tempo per la stazione
TRB	Test Review Board
TRR	Test Readiness Review
UEER	Upper Elevation Equipment Room
UTC	Coordinated Universal Time
VCB	Verification Control Board
VLBI	Very Long Base Interferometry
WBS	Work Breakdown Structure
TPI	Total power integrator
Tsys	Temperatura di sistema
BWHM	Beam Width Half Maximum

Configurazione d'antenna

Lo specchio secondario M2 era allineato secondo le misure meccaniche eseguite a 45° di elevazione da MTM per illuminare il fuoco gregoriano. Il PFP era in posizione di parcheggio. Il GFR è stato collocato a 1323.5 e -567.8 per posizionare in fuoco i ricevitori in banda K e banda C rispettivamente. La superficie attiva era disabilitata, lasciata secondo l'allineamento meccanico effettuato da MTM. Del multifeed in banda K si è utilizzato il feed centrale; il derotatore non era in funzione.

Configurazione frontend/backend

Per entrambi i ricevitori le misure sono state effettuate in solo un canale, quello relativo alla polarizzazione circolare sinistra; in banda K il canale era corrispondente al feed centrale (0L).

Per il ricevitore 22GHz è stata selezionata la banda 22-24GHz (LO=21900MHz), mentre per il 7GHz si è scelto di osservare nella banda ristretta 7.0-7.7GHz (LO=6900MHz) per via della presenza, nella parte bassa della banda, di forti interferenze. Nonostante questa scelta conservativa, numerose misure effettuate con l'antenna rivolta a nord sono risultate non utilizzabili a causa di RFI.

La costante di campionamento del backend è stata impostata a 40 ms per tutte le misure.

Il ricevitore 7GHz

Puntamenti manuali – Encoder offsets

Scopo di questa prima fase era l'identificazione degli offset macroscopici dovuti al montaggio meccanico degli encoder.

Per questo tipo di misura si è optato per il ricevitore in banda C che, avendo HPBW (Half Power Beam Width) più ampio, facilitava la rilevazione della prima radiosorgente.

Utilizzando la Luna come target, leggendo le variazioni del total power detector e muovendosi di 0.5*HPBW tra una scansione e l'altra nei due assi è stato possibile stimare gli offset, pari a 2.2° in azimuth e 0.1° in elevazione.

Applicando gli offset così misurati si è poi eseguito un cross-scan (lunghezza 1°, velocità 4.0 °/min) sul calibratore 3c218, non distante dalla posizione della Luna, ottenendo la prima detezione di una radiosorgente (Figura 1) e confermando gli offset di puntamento precedentemente stimati.

Figura 1 - Scans in azimuth ed elevazione sulla sorgente 3c218, in ascissa la coordinata (°), in ordinata la temperatura d'antenna (K).

Puntamenti manuali - Stima del modello di puntamento

Al fine di misurare gli offset in altre posizioni di azimuth ed elevazione sono state prodotte delle mappe 1°x1° attorno a radiosorgenti brillanti. A titolo di esempio in Figura 2 si riporta una mappa relativa a *VirgoA*.

La fase sucessiva ha previsto l'iterazione manuale dei seguenti step:

- 1. Tracking di un calibratore
- 2. Applicazione degli offset stimati per la posizione azimuth/elevazione della sorgente
- 3. Cross scan (1° span; 4.0 °/min)
- 4. Fit gaussiano, misura della posizione del picco e stima del nuovo offset

Figura 2 – Mappa 1°x1° in coordinate equatoriali attorno a VirgoA.

5. Controllo visivo del dato per decidere se utilizzare o scartare la misura Scegliendo opportunamente quando osservare le sorgenti, per campionare il piano azimuth/elevazione, alla conclusione di questa attività si è ottenuto un primo modello di puntamento per il fuoco gregoriano. La copertura ottenuta con queste misure è riportata in Figura 3, si noti che la zona nord (azimuth) 0°) risulta sottocampionata rispetto a quella sud (azimuth 180°) per i problemi di RFI descritti in precedenza. La Figura 4 riporta le misure degli offset lungo i due assi utilizzate per il calcolo del modello di puntamento preliminare.

Sulla base di tale modello si è quindi provveduto ad automatizzare il processo di misura. E' stata creata una schedula per l'esecuzione di cross-scan (1° span; 3.0°/min) su una serie di calibratori di puntamento per ottimizzare la copertura del cielo. Sono stati selezionati calibratori non risolti dal beam di SRT a 22 GHz (Tabella 1), in modo da impiegare la medesima schedula anche per il ricevitore a più alta frequenza. Si è scelto di osservare durante le ore notturne per eliminare gli effetti di deformazione termica della struttura, che avrebbero potuto alterare il risultato.

Il modello di puntamento finale così ottenuto fa uso di otto parametri come riassunto in Tabella 2, secondo la formula (1). La derivazione dei parametri e il successivo test in antenna risultano in una stima dei residui pari a 0.002° e 0.003° in azimuth ed elevazione rispettivamente.

Figura 3 – Copertura del piano azimuth/elevazione ottenuta coi puntamenti manuali. In ascissa l'azimuth (gradi), in ordinata l'elevazione (gradi).

$$\begin{split} \Delta X &= P_1 - P_2 cos(\emptyset) sin(X) sec(Y) + P_3 tan(Y) - P_4 sec(Y) + P_5 sin(X) tan(Y) - P_6 cos(X) tan(Y) + P_{12} X + P_{13} cos(X) + P_{14} sin(X) \end{split}$$

$$\begin{split} \Delta Y &= P_5 cos(X) + P_6 sin(X) + P_7 - P_8 (cos(\emptyset) cos(X) sin(Y) - sin(\emptyset) cos(Y)) + \\ P_9 Y + P_{10} cos(Y) + P_{11} sin(Y) \end{split}$$

Figura 4 – Offsets sui due assi (ordinata) plottati in relazione alla posizione in cui sono stati misurati (ascissa). Valori espressi in gradi.

Source	Size(")	RA J2000	DEC J2000	Scan_Subscan
3c48	1.55	01:37:41.2971	+33:09:35.118	1_1
3c147	1	05:42:36.1379	+49:51:07.234	1_10
3c286	1.5	13:31:08.2881	+30:30:32.960	1_19
3c309.1	1.5	14:59:07.578	+71:40:19.850	1_28
3c380	1	18:29:31.725	+48:44:46.950	1_37
3c84	1	03:19:48.160	+41:30:42.10	1_46
J0854+2006		08:54:48.87	20:06:30.64	1_55
J1256-0547		12:56:11.160	-05:47:21.52	1_64
J0730-1141		07:30:19.110	-11:41:12.60	1_73
J0927+3902		09:27:03.0139	+39:02:20.851	1_82
J1337-1257		13:37:39.7827	-12:57:24.693	1_91
J1459+7140		14:59:07.5838	+71:40:19.867	1_100
J1517-2422		15:17:41.8131	-24:22:19.475	1_109
J1642+3948		16:42:58.8099	+39:48:36.993	1_118
J1800+7828		18:00:45.6839	+78:28:04.018	1_127
J1924-2914		19:24:51.0559	-29:14:30.121	1_136
J2202+4216		22:02:43.2913	+42:16:39.979	1_145
J2246-1206		22:46:18.2319	-12:06:51.277	1_154

Tabella 1 – Elenco delle sorgenti utilizzate per ricavare il modello di puntamento

Parameter P1	Explanation Azimuth encoder offset	Value -2.2904782295
P2	Gravity effect on the RF axis projected on azimuth	Not used
P3	Axis skew	-0.0065315585
P4	Box Offset	-0.0160572976
P5	Tilt out (tilt of El=90° toward az/el=0°,0°)	-0.0010806206
P6	Tilt over(tilt of EI=90° toward az/eI=90°,0°)	-0.0005583506
P7	Elevation encoder offset	0.2512113750
P8	Gravity effect on the RF axis projected on elevation	-0.1673307717
P9 P10 P11	Elevation angle slope El*cosEl El*sinEl	Not used Not used 0.0019002043

Tabella 2 – Modello di puntamento per il ricevitore 7GHz in fuoco gregoriano

La curva di guadagno

Anche in questo caso le misure sono state condotte tra 7.0 e 7.7GHz, utilizzando dei cross-scan eseguiti lungo gli assi del frame orizzontale (1° span, 4.2°/min). Le osservazioni hanno avuto luogo nelle ore diurne, con cielo sereno ed una temperatura media a terra di 30°C. Per velocizzare l'acquisizione dei dati sono state impiegate varie sorgenti, come sintetizzato dalla Tabella 3 che riporta anche il flusso aspettato alla frequenza di osservazione (7.35GHz a centro banda).

Source	RA J2000	DEC J2000	Flux(Jy)
3c48	01:37:41.2971	+33:09:35.118	3,79754
3c147	05:42:36.1379	+49:51:07.234	5,29111
3c286	13:31:08.2881	+30:30:32.960	5,7071
3c309.1	14:59:07.578	+71:40:19.850	2,34331
3c295	14:11:20.6477	+52:12:09.141	4,05877
3c161	06:27:10.096	-05:53:04.72	4,36141

Al fine di diminuire l'incertezza sulla misura del guadagno, si è deciso di prevedere a schedula una stima dell'opacità atmosferica ogni due ore circa di osservazione. Questo ha consentito di recuperare il 2-3% sulla misura di efficienza totale. Il calcolo dell'opacità (tau) è stato eseguito tramite la formula empirica, dove D_{tsys} è la differenza di temperatura di sistema tra 30° e 90° di elevazione e T_{atm} è la temperatura atmosferica di riferimento:

$$Tau = \ln\left(\frac{2}{1 + sqrt(1 - 4(Dtsys/Tatm))}\right)$$
(1)

La curva di guadagno prodotta, compensata per l'attenuazione atmosferica, è riportata in Figura 5. Il DPFU (degrees per flux unit) risulta essere 0.54 K/Jy all'elevazione di 45°, in linea con le attese per la frequenza e la configurazione d'antenna descritta nel paragrafo 2.

Stima del beamsize

In contemporanea alle misure di guadagno, osservando sorgenti puntiformi, è stato possibile misurare anche il fascio d'antenna nelle due direzioni di scansione (azimuth ed elevazione) ed in particolare controllare quanto questo venisse modificato dalle deformazioni strutturali lungo lo span di elevazione. La Figura 6 mostra l'andamento: la retta rossa indica il valore di HPBW stimato per la frequenza di osservazione (0.0458°). La larghezza del beam rimane stabile nella finestra attorno ai 45°, quota di allineamento meccanico, mentre al diminuire dell'elevazione tende a deformarsi; lunga la direzione N/S la deformazione risulta evidente anche sopra i 65°.

Figura 5 – Curva di guadagno del ricevitore in banda C in fuoco gregoriano. Compensazione per le deformazioni della struttura non abilititate.

Figura 6 – Larghezza del beam al variare dell'elevazione, misurato nelle direzioni est/ovest e nord/sud

Il ricevitore 22GHz

Modello di puntamento

Considerato che il ricevitore in banda K è installato nel medesimo fuoco del ricevitore in banda C, il modello ricavato per quest'ultimo è stato impiegato come base di partenza per le misure nella banda 18-20 GHz. Anche in questo caso si è deciso di produrre mappe (1°x1°) attorno ai calibratori prescelti, per stimare quale fosse l'offset di puntamento. Un esempio è riportato in Figura 7 (prima luce in banda K), dove 3c295 risulta effettivamente al centro della mappa.

0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.89 1 Figura 7 – Mappa di 1°x1° attorno a 3c295, ottenuta nella banda 18-20 GHz utilizzando il modello di puntamento per il ricevitore 7GHz. Prima luce in banda K.

Partendo quindi dalla base fornita dal modello del 7GHz si è preparata una schedula per osservare le sorgenti di Tabella 1, variando leggermente i parametri dello scan (0.7° span, 1.5°/min): essendo il beam sensibilmente più stretto sono stati ridotti lo span e la velocità di scansione per avere un numero sufficiente di campioni per beam e per evitare di perdere precisione nel tracking durante le scansioni.

L'accumulo di un numero adeguato di punti , in questo caso, è stato complicato dalla necessità di trovare ore notturne con cielo completamente privo di nubi.

Alla conclusione la copertura del piano azimuth/elevazione (rappresentata in Figura 8) ha portato ad un modello a 18 parametri (vedi Tabella 4), con residui pari a 0.0019° e 0.0022° in azimuth ed elevazione rispettivamente.

Figura 8 – Copertura del piano Az/El dei dati per ricavare il modello di puntamento per il ricevitore in banda K

Tabella 4	- Modello di	puntamento p	per il ricevitore i	n banda K in fuoco	gregoriano
-----------	--------------	--------------	---------------------	--------------------	------------

Parameter P1 P2	Explanation Azimuth encoder offset Gravity effect on the RF axis projected on	Value -2.2933666706 Not used
P3	azimuth Axis skew	-0.0081273140
P4 P5	Tilt out (tilt of El=90° toward az/el=0°,0°)	-0.0185187403
P6 P7	Tilt over (tilt of El=90° toward az/el=90°,0°) Elevation encoder offset	-0.0009291506 0.3067421317
P8	Gravity effect on the RF axis projected on elevation	-0.2181605548
P9	Elevation angle slope	Not used
P10	El*cosEl	Not used
P11	El*sinEl	-0.0339095332
P12	Azimuth angle slope	-0.0000435748
P13	Az*cosAz	-0.0003875243
P14	Az*sinAz	0.0004249602
P15	El*cos2Az	0.0005932985
P16	El*sin2Az	0.0002558492
P17	Az*cos2Az	0.0002624479
P18	Az*sin2Az	0.0001502736
P19	El*cos8El	0.0016966705
P20	El*sin8El	-0.0025470885

La curva di guadagno

Con la stessa configurazione di scan utilizzata per il modello di puntamento si è calcolata la curva di guadagno nella banda 22-24 GHz, considerata di maggior interesse dal punto di vista radioastronomico. Nel corso del commissioning tecnico sarebbe comunque interessante effettuare le stesse misure anche nelle altre sottobande del ricevitore (18-20, 20-22 e 24-26 GHz).

Come unico target, osservato dal sorgere al tramontare, è stata scelta la sorgente 3c147 (flusso aspettato 1.713 Jy). Si è preferito usare un'unica sorgente per non perdere tempo nello slewing tra più sorgenti e per prendere le misure di opacità atmosferica (skydip ogni 30 minuti) sempre in vicinanza del target. 3c147 garantiva un buon range in elevazione durante le ore notturne nelle quali si è osservato.

Per stimare l'opacità atmosferica è stata utilizzata la formula empirica (1), confrontando l'esito con i dati forniti dal radiometro installato al sito. I valori sono risultati in accordo entro il 15%. Per la compensazione dei dati è stato impiegato il valore di tau stimato con gli skydip: essendo stata riscontrata la formazione di condensa sulla copertura del gregoriano, per la disparità di condizioni non era possibile applicare le misure del radiometro ai dati ottenuti con l'antenna.

Figura 9 - Curva di guadagno del ricevitore in banda K (22-24GHz) in fuoco gregoriano. Compensazione per le deformazioni della struttura non abilititate.

La curva di guadagno di Figura 9 riporta un DPFU di 0.52 K/Jy all'elevazione di circa 45°, in linea con le attese per la frequenza e la configurazione d'antenna impiegate. Anche la forte perdita di efficienza lontano del punto di allinemanento meccanico è giustificata in primo luogo dall'assenza della superficie attiva, quindi dall'impossibilità di compensare la migrazione di M2.

Stima del beamsize

Anche in questo caso è stato possibile, assieme alle misure di guadagno, misurare la larghezza del fascio d'antenna nelle due direzioni di scansione (azimuth ed elevazione) monitorando le deformazioni al variare dell'elevazione. La Figura 10 mostra le misure e segnala, con una retta rossa, la dimensione del beam stimata per la frequenza di osservazione (0.0133°). E' facile rilevare come, allontanadosi dalla finestra attorno ai 45°, il beam si deforma progressivamente. All'aumentare dell'elevazione la deformazione è più evidente nella direzione nord/sud (elevazione).

Figura 10 - Larghezza del fascio d'antenna al variare dell'elevazione, misurato nelle direzioni est/ovest e nord/sud

Quesiti aperti

Nel paragrafo 5.2 si è descritto che, per ricavare la curva di guadagno per il ricevitore in banda K, è stata osservata la sorgente 3c147. Nei giorni successivi le misure sono state ripetute utlizzando una diversa sorgente di calibrazione (3c286). La curva ricavata con questa campagna (Figura 11) evidenzia un guadagno inaspettato di circa 0.66 K/Jy, molto vicino a quello previsto per SRT al pieno della sua operatività. Si noti che i valori di guadagno ottenuti con gli scan lungo l'asse di elevazione (croci verdi) mostrano un andamento anomalo, con numerosi punti che si discostano dalla curva dei valori presi con gli scan in azimuth (croci rosse), sebbene siano coevi. Durante l'acquisizione il meteo era assolutamente adatto a lavorare alla frequenza in

oggetto. Alcune possibili spiegazioni, come un errore nel calcolo del flusso della sorgente o un problema di compressione del backend che esce dalla zona lineare, sono già state rigettate.

L'anomalia va quindi investigata più in profondità, ripetendo le misure e controllando il sistema di acquisizione in tutti i dettagli.

